update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- sw
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_13_0
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Swahili - Badili
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice 13.0
|
20 |
+
type: mozilla-foundation/common_voice_13_0
|
21 |
+
config: sw
|
22 |
+
split: test
|
23 |
+
args: 'config: sw, split: test'
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 98.40119332745073
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Small Swahili - Badili
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 13.0 dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.4329
|
38 |
+
- Wer: 98.4012
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 1e-05
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 8
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 500
|
64 |
+
- training_steps: 12000
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
71 |
+
| 0.3563 | 0.35 | 1000 | 0.4938 | 100.5715 |
|
72 |
+
| 0.2853 | 0.69 | 2000 | 0.4143 | 100.7007 |
|
73 |
+
| 0.1612 | 1.04 | 3000 | 0.3910 | 100.9748 |
|
74 |
+
| 0.1399 | 1.38 | 4000 | 0.3762 | 98.4989 |
|
75 |
+
| 0.1657 | 1.73 | 5000 | 0.3700 | 90.3357 |
|
76 |
+
| 0.0818 | 2.08 | 6000 | 0.3775 | 98.0493 |
|
77 |
+
| 0.0749 | 2.42 | 7000 | 0.3768 | 97.9936 |
|
78 |
+
| 0.0637 | 2.77 | 8000 | 0.3822 | 92.9440 |
|
79 |
+
| 0.0355 | 3.11 | 9000 | 0.4036 | 93.8979 |
|
80 |
+
| 0.0299 | 3.46 | 10000 | 0.4141 | 97.9695 |
|
81 |
+
| 0.0277 | 3.8 | 11000 | 0.4175 | 98.2961 |
|
82 |
+
| 0.0147 | 4.15 | 12000 | 0.4329 | 98.4012 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.29.0.dev0
|
88 |
+
- Pytorch 2.0.0+cu117
|
89 |
+
- Datasets 2.12.0
|
90 |
+
- Tokenizers 0.13.3
|