Piotr Zalewski
commited on
Write README
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
3 |
+
datasets:
|
4 |
+
- KingNish/reasoning-base-20k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: llama3.2
|
8 |
+
tags:
|
9 |
+
- text-generation-inference
|
10 |
+
- transformers
|
11 |
+
- llama
|
12 |
+
- trl
|
13 |
+
- sft
|
14 |
+
- reasoning
|
15 |
+
- llama-3
|
16 |
+
---
|
17 |
+
|
18 |
+
# Model Description
|
19 |
+
|
20 |
+
A work in progress reasoning Llama 3.2 3B model trained on reasoning data.
|
21 |
+
|
22 |
+
Since I used different training code, it is unknown whether it generates the same kind of reasoning.
|
23 |
+
Here is what inference code you should use:
|
24 |
+
```py
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
+
|
27 |
+
MAX_REASONING_TOKENS = 1024
|
28 |
+
MAX_RESPONSE_TOKENS = 512
|
29 |
+
|
30 |
+
model_name = "piotr25691/thea-3b-25r"
|
31 |
+
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
|
35 |
+
prompt = "Which is greater 9.9 or 9.11 ??"
|
36 |
+
messages = [
|
37 |
+
{"role": "user", "content": prompt}
|
38 |
+
]
|
39 |
+
|
40 |
+
# Generate reasoning
|
41 |
+
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
|
42 |
+
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
|
43 |
+
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
|
44 |
+
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
45 |
+
|
46 |
+
# print("REASONING: " + reasoning_output)
|
47 |
+
|
48 |
+
# Generate answer
|
49 |
+
messages.append({"role": "reasoning", "content": reasoning_output})
|
50 |
+
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
51 |
+
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
|
52 |
+
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
|
53 |
+
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
54 |
+
|
55 |
+
print("ANSWER: " + response_output)
|
56 |
+
```
|
57 |
+
|
58 |
+
- **Trained by:** [Piotr Zalewski](https://huggingface.co/piotr25691)
|
59 |
+
- **License:** llama3.2
|
60 |
+
- **Finetuned from model:** [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
61 |
+
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
|
62 |
+
|
63 |
+
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
|
64 |
+
|
65 |
+
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
|