File size: 1,901 Bytes
e75506c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
language:
- np
base_model: RoBERTa
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: RoBERTa-devangari-script-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBERTa-devangari-script-classification
This model is a fine-tuned version of [RoBERTa](https://huggingface.co/RoBERTa) on the Custom Devangari Datasets dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0329
- Accuracy: 0.9935
- F1: 0.9935
- Precision: 0.9935
- Recall: 0.9935
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2337 | 0.9997 | 1638 | 0.0603 | 0.9874 | 0.9874 | 0.9875 | 0.9874 |
| 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 |
| 0.0252 | 2.9991 | 4914 | 0.0329 | 0.9935 | 0.9935 | 0.9935 | 0.9935 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|