luisarizmendi
commited on
Commit
•
9c22bfa
1
Parent(s):
cc191f8
Update run_model.py
Browse files- run_model.py +18 -18
run_model.py
CHANGED
@@ -2,51 +2,51 @@ import gradio as gr
|
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
def detect_objects_in_files(files):
|
12 |
"""
|
13 |
Processes uploaded images for object detection.
|
14 |
"""
|
15 |
if not files:
|
16 |
return "No files uploaded.", []
|
17 |
|
18 |
-
model = YOLO(
|
19 |
-
|
20 |
if torch.cuda.is_available():
|
21 |
-
model.to('cuda')
|
22 |
print("Using GPU for inference")
|
23 |
else:
|
24 |
print("Using CPU for inference")
|
25 |
-
|
26 |
-
|
27 |
results_images = []
|
28 |
for file in files:
|
29 |
try:
|
30 |
image = Image.open(file).convert("RGB")
|
31 |
-
results = model(image)
|
32 |
result_img_bgr = results[0].plot()
|
33 |
result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
|
34 |
-
results_images.append(result_img_rgb)
|
35 |
-
|
36 |
# If you want that images appear one by one (slower)
|
37 |
-
#yield "Processing image...", results_images
|
38 |
-
|
39 |
except Exception as e:
|
40 |
return f"Error processing file: {file}. Exception: {str(e)}", []
|
41 |
|
42 |
-
del model
|
43 |
torch.cuda.empty_cache()
|
44 |
-
|
45 |
return "Processing completed.", results_images
|
46 |
|
47 |
interface = gr.Interface(
|
48 |
fn=detect_objects_in_files,
|
49 |
-
inputs=
|
|
|
|
|
|
|
50 |
outputs=[
|
51 |
gr.Textbox(label="Status"),
|
52 |
gr.Gallery(label="Results")
|
|
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
|
8 |
+
DEFAULT_MODEL_URL = "https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detector-hardhat-or-hat/object-detector-hardhat-or-hat.pt"
|
9 |
|
10 |
+
def detect_objects_in_files(model_input, files):
|
|
|
|
|
11 |
"""
|
12 |
Processes uploaded images for object detection.
|
13 |
"""
|
14 |
if not files:
|
15 |
return "No files uploaded.", []
|
16 |
|
17 |
+
model = YOLO(str(model_input))
|
|
|
18 |
if torch.cuda.is_available():
|
19 |
+
model.to('cuda')
|
20 |
print("Using GPU for inference")
|
21 |
else:
|
22 |
print("Using CPU for inference")
|
23 |
+
|
|
|
24 |
results_images = []
|
25 |
for file in files:
|
26 |
try:
|
27 |
image = Image.open(file).convert("RGB")
|
28 |
+
results = model(image)
|
29 |
result_img_bgr = results[0].plot()
|
30 |
result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
|
31 |
+
results_images.append(result_img_rgb)
|
32 |
+
|
33 |
# If you want that images appear one by one (slower)
|
34 |
+
#yield "Processing image...", results_images
|
35 |
+
|
36 |
except Exception as e:
|
37 |
return f"Error processing file: {file}. Exception: {str(e)}", []
|
38 |
|
39 |
+
del model
|
40 |
torch.cuda.empty_cache()
|
41 |
+
|
42 |
return "Processing completed.", results_images
|
43 |
|
44 |
interface = gr.Interface(
|
45 |
fn=detect_objects_in_files,
|
46 |
+
inputs=[
|
47 |
+
gr.Textbox(value=DEFAULT_MODEL_URL, label="Model URL", placeholder="Enter the model URL"),
|
48 |
+
gr.Files(file_types=["image"], label="Select Images"),
|
49 |
+
],
|
50 |
outputs=[
|
51 |
gr.Textbox(label="Status"),
|
52 |
gr.Gallery(label="Results")
|