Lukas Erhard
commited on
Commit
·
b67ea4f
1
Parent(s):
862494c
update readme for rev1 model
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- de
|
5 |
+
pipeline_tag: text-classification
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
library_name: transformers
|
9 |
+
---
|
10 |
+
|
11 |
+
# PopBERT
|
12 |
+
|
13 |
+
PopBERT is a model for German-language populism detection in political speeches within the German Bundestag, based on the deepset/gbert-large model: https://huggingface.co/deepset/gbert-large
|
14 |
+
|
15 |
+
It is a multilabel model trained on a manually curated dataset of sentences from the 18th and 19th legislative periods.
|
16 |
+
In addition to capturing the foundational dimensions of populism, namely "anti-elitism" and "people-centrism," the model was also fine-tuned to identify the underlying ideological orientation as either "left-wing" or "right-wing."
|
17 |
+
|
18 |
+
# Prediction
|
19 |
+
|
20 |
+
The model outputs a Tensor of length 4.
|
21 |
+
The table connects the position of the predicted probability to its dimension.
|
22 |
+
|
23 |
+
| **Index** | **Dimension** |
|
24 |
+
|-----------|--------------------------|
|
25 |
+
| 0 | Anti-Elitism |
|
26 |
+
| 1 | People-Centrism |
|
27 |
+
| 2 | Left-Wing Host-Ideology |
|
28 |
+
| 3 | Right-Wing Host-Ideology |
|
29 |
+
|
30 |
+
# Usage Example
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoModel
|
34 |
+
from transformers import AutoTokenizer
|
35 |
+
|
36 |
+
# load tokenizer
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("luerhard/PopBERT")
|
38 |
+
|
39 |
+
# load model
|
40 |
+
model = AutoModel.from_pretrained("luerhard/PopBERT")
|
41 |
+
|
42 |
+
# define text to be predicted
|
43 |
+
text = (
|
44 |
+
"Das ist Klassenkampf von oben, das ist Klassenkampf im Interesse von "
|
45 |
+
"Vermögenden und Besitzenden gegen die Mehrheit der Steuerzahlerinnen und "
|
46 |
+
"Steuerzahler auf dieser Erde."
|
47 |
+
)
|
48 |
+
|
49 |
+
# encode text with tokenizer
|
50 |
+
encodings = tokenizer(text)
|
51 |
+
|
52 |
+
# predict
|
53 |
+
with torch.inference_mode():
|
54 |
+
out = model(**encodings)
|
55 |
+
|
56 |
+
# get probabilties
|
57 |
+
probs = torch.nn.functional.sigmoid(out.logits)
|
58 |
+
print(probs.detach().numpy())
|
59 |
+
```
|
60 |
+
|
61 |
+
```
|
62 |
+
array([[0.87651485, 0.34838045, 0.983123 , 0.02148381]], dtype=float32)
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
# Performance
|
67 |
+
|
68 |
+
To maximize performance, it is recommended to use the following thresholds per dimension:
|
69 |
+
|
70 |
+
```
|
71 |
+
[0.415961, 0.295400, 0.429109, 0.302714]
|
72 |
+
```
|
73 |
+
|
74 |
+
Using these thresholds, the model achieves the follwing performance on the test set:
|
75 |
+
|
76 |
+
| Dimension | Precision | Recall | F1 |
|
77 |
+
|---------------------|---------------|---------------|---------------|
|
78 |
+
| Anti-Elitism | 0.81 | 0.88 | 0.84 |
|
79 |
+
| People-Centrism | 0.70 | 0.73 | 0.71 |
|
80 |
+
| Left-Wing Ideology | 0.69 | 0.77 | 0.73 |
|
81 |
+
| Right-Wing Ideology | 0.68 | 0.66 | 0.67 |
|
82 |
+
| --- | --- | --- | --- |
|
83 |
+
| micro avg | 0.75 | 0.80 | 0.77 |
|
84 |
+
| macro avg | 0.72 | 0.76 | 0.74 |
|