lucyknada commited on
Commit
07bb062
1 Parent(s): 42773d6

Upload ./README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +185 -0
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - allenai/tulu-3-sft-mixture
8
+ base_model:
9
+ - meta-llama/Llama-3.1-8B
10
+ library_name: transformers
11
+ ---
12
+ ### exl2 quant (measurement.json in main branch)
13
+ ---
14
+ ### check revisions for quants
15
+ ---
16
+
17
+
18
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
19
+
20
+ # Llama-3.1-Tulu-3-8B-SFT
21
+
22
+ Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques.
23
+ Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
24
+
25
+ ## Model description
26
+
27
+ - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
28
+ - **Language(s) (NLP):** Primarily English
29
+ - **License:** Llama 3.1 Community License Agreement
30
+ - **Finetuned from model:** meta-llama/Llama-3.1-8B
31
+
32
+ ### Model Sources
33
+
34
+ - **Training Repository:** https://github.com/allenai/open-instruct
35
+ - **Eval Repository:** https://github.com/allenai/olmes
36
+ - **Paper:** https://allenai.org/papers/tulu-3-report.pdf (arXiv soon)
37
+ - **Demo:** https://playground.allenai.org/
38
+
39
+ ### Model Family
40
+
41
+ | **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** |
42
+ |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
43
+ | **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) |
44
+ | **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) |
45
+ | **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) |
46
+ | **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) |
47
+ | **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) |
48
+
49
+ ## Using the model
50
+
51
+ ### Loading with HuggingFace
52
+
53
+ To load the model with HuggingFace, use the following snippet:
54
+ ```
55
+ from transformers import AutoModelForCausalLM
56
+
57
+ tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-8B-SFT")
58
+ ```
59
+
60
+ ### VLLM
61
+
62
+ As a Llama base model, the model can be easily served with:
63
+ ```
64
+ vllm serve allenai/Llama-3.1-Tulu-3-8B-SFT
65
+ ```
66
+ Note that given the long chat template of Llama, you may want to use `--max_model_len=8192`.
67
+
68
+ ### Chat template
69
+
70
+ The chat template for our models is formatted as:
71
+ ```
72
+ <|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
73
+ ```
74
+ Or with new lines expanded:
75
+ ```
76
+ <|user|>
77
+ How are you doing?
78
+ <|assistant|>
79
+ I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
80
+ ```
81
+ It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
82
+
83
+ ### System prompt
84
+
85
+ In Ai2 demos, we use this system prompt by default:
86
+ ```
87
+ You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI.
88
+ ```
89
+ The model has not been trained with a specific system prompt in mind.
90
+
91
+ ### Bias, Risks, and Limitations
92
+
93
+ The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
94
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code.
95
+ See the Falcon 180B model card for an example of this.
96
+
97
+
98
+ ## Performance
99
+
100
+ | Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct |
101
+ |---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------|
102
+ | **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 |
103
+ | **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 |
104
+ | **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 |
105
+ | **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 |
106
+ | **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 |
107
+ | **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 |
108
+ | **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 |
109
+ | **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 |
110
+ | **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 |
111
+ | **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 |
112
+ | **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 |
113
+ | **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 |
114
+ | **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 |
115
+
116
+ | Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B |
117
+ |---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|
118
+ | **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 |
119
+ | **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 |
120
+ | **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 |
121
+ | **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 |
122
+ | **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 |
123
+ | **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 |
124
+ | **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 |
125
+ | **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 |
126
+ | **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** |
127
+ | **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 |
128
+ | **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 |
129
+ | **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** |
130
+ | **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 |
131
+
132
+
133
+ ## Hyperparamters
134
+
135
+ SFT:
136
+ - **Learning Rate**: 5E-6 (8B), 2E-6 (70B)
137
+ - **Effective Batch Size:** 128
138
+ - **Max. Sequence Length:** 4096
139
+ - **Loss Accumulation:** Sum (see https://unsloth.ai/blog/gradient)
140
+ - **Learning Rate Schedule:** Linear
141
+ - **LR Warmup Ratio:** 0.03
142
+ - **Num. Epochs:** 2
143
+
144
+ ## License and use
145
+
146
+ All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
147
+ Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
148
+ Tülu3 is intended for research and educational use.
149
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
150
+
151
+ ## Citation
152
+
153
+ If Tülu3 or any of the related materials were helpful to your work, please cite:
154
+ ```
155
+ @article{lambert2024tulu3,
156
+ title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
157
+ author = {
158
+ Nathan Lambert and
159
+ Jacob Morrison and
160
+ Valentina Pyatkin and
161
+ Shengyi Huang and
162
+ Hamish Ivison and
163
+ Faeze Brahman and
164
+ Lester James V. Miranda and
165
+ Alisa Liu and
166
+ Nouha Dziri and
167
+ Shane Lyu and
168
+ Yuling Gu and
169
+ Saumya Malik and
170
+ Victoria Graf and
171
+ Jena D. Hwang and
172
+ Jiangjiang Yang and
173
+ Ronan Le Bras and
174
+ Oyvind Tafjord and
175
+ Chris Wilhelm and
176
+ Luca Soldaini and
177
+ Noah A. Smith and
178
+ Yizhong Wang and
179
+ Pradeep Dasigi and
180
+ Hannaneh Hajishirzi
181
+ },
182
+ year = {2024},
183
+ email = {[email protected]}
184
+ }
185
+ ```