File size: 2,976 Bytes
506247a 829f66f 506247a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: other
license_name: license
license_link: LICENSE
---
### exl2 quant (measurement.json included)
---
### original readme below
---
<div align="center">
<h1>
Index-1.9B-Chat
</h1>
</div>
## Model Introduction
We are excited to announce the release of a lightweight version from the Index series models: the Index-1.9B series.
The open-source Index-1.9B series includes the following models:
- Index-1.9B base: The base model, with 1.9 billion non-embedding parameters, pre-trained on a 2.8T corpus mainly in Chinese and English. It leads in multiple evaluation benchmarks compared to models of the same level.
- Index-1.9B pure : A control version of the base model with the same parameters and training strategy, but strictly filtered out all instruction-related data from the corpus to verify the impact of instructions on benchmarks.
- **Index-1.9B chat (this repository's model)** : A dialogue model aligned with SFT and DPO based on the Index-1.9B base. We found that due to the introduction of a lot of internet community corpus in our pre-training, the model has significantly more interesting chatting capabilities.
- Index-1.9B character : Introduces RAG on top of SFT and DPO to achieve few-shots role-playing customization.
Adapted to llamacpp and Ollama, see [Index-1.9B-Chat-GGUF](https://huggingface.co/IndexTeam/Index-1.9B-Chat-GGUF)
For more details, see our [GitHub](https://github.com/bilibili/Index-1.9B) and [Index-1.9B Technical Report](https://github.com/bilibili/Index-1.9B/blob/main/Index-1.9B%20%E6%8A%80%E6%9C%AF%E6%8A%A5%E5%91%8A.pdf)
### Loading with Transformers
You can load the Index-1.9B-Chat model for dialogue using the following code:
```python
import argparse
from transformers import AutoTokenizer, pipeline
# Attention! The directory must not contain "." and can be replaced with "_".
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', default="IndexTeam/Index-1.9B-Chat", type=str, help="")
parser.add_argument('--device', default="cpu", type=str, help="") # also could be "cuda" or "mps" for Apple silicon
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
generator = pipeline("text-generation",
model=args.model_path,
tokenizer=tokenizer, trust_remote_code=True,
device=args.device)
system_message = "你是由哔哩哔哩自主研发的大语言模型,名为“Index”。你能够根据用户传入的信息,帮助用户完成指定的任务,并生成恰当的、符合要求的回复。"
query = "续写 天不生我金坷垃"
model_input = []
model_input.append({"role": "system", "content": system_message})
model_input.append({"role": "user", "content": query})
model_output = generator(model_input, max_new_tokens=300, top_k=5, top_p=0.8, temperature=0.3, repetition_penalty=1.1, do_sample=True)
print('User:', query)
print('Model:', model_output)
```
|