Update README.md
Browse files
README.md
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
|
|
13 |
|
14 |
### Model Description
|
15 |
|
@@ -17,126 +18,44 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
-
- **Paper [optional]:** [
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
114 |
|
115 |
-
#### Factors
|
116 |
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
@@ -144,58 +63,28 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
200 |
|
201 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [Structured Pruning, Phi-2, Memory-efficient Pruning]
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
+
We prune the Phi-2 (2.7B) model to 35% sparsty (1.8B) and then finetune on 100K 2048 length sequences from the C4 dataset (https://huggingface.co/datasets/c4).
|
9 |
+
Our pruning algorithm is described in the paper [Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes](https://arxiv.org/abs/2402.05406).
|
10 |
+
[Code for pruning algorithm can be found here ](https://github.com/ldery/Bonsai/tree/main).
|
11 |
|
12 |
## Model Details
|
13 |
+
Model is derived from Pruning the [Phi-2 Model](https://huggingface.co/microsoft/phi-2)
|
14 |
|
15 |
### Model Description
|
16 |
|
|
|
18 |
|
19 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
20 |
|
21 |
+
- **Developed by:** Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, Ameet Talwalkar
|
22 |
+
- **Model type:** Decoder-only
|
23 |
+
- **Language(s) (NLP):** English
|
24 |
+
- **License:** MIT
|
|
|
|
|
|
|
25 |
|
26 |
### Model Sources [optional]
|
27 |
|
28 |
<!-- Provide the basic links for the model. -->
|
29 |
|
30 |
+
- **Repository:** [https://github.com/ldery/Bonsai/tree/main]
|
31 |
+
- **Paper [optional]:** [https://arxiv.org/abs/2402.05406]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Training Details
|
36 |
|
37 |
### Training Data
|
38 |
|
39 |
+
Finetuned on 100K 2048 length sequences from the C4 dataset (https://huggingface.co/datasets/c4).
|
|
|
|
|
40 |
|
41 |
### Training Procedure
|
42 |
|
43 |
+
Full fine-tuning.
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
#### Training Hyperparameters
|
47 |
|
48 |
+
Distillation KL-Weight : 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
Learning Rate : 1e-4
|
51 |
|
52 |
+
Batch Size : 128
|
53 |
|
54 |
+
Optimzer : AdamW
|
55 |
|
56 |
+
Warmup Steps : 5
|
57 |
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
## Environmental Impact
|
61 |
|
|
|
63 |
|
64 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
65 |
|
66 |
+
- **Hardware Type:** NVIDIA A6000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
## Citation [optional]
|
69 |
|
|
|
70 |
|
71 |
**BibTeX:**
|
72 |
|
73 |
+
@misc{dery2024everybody,
|
74 |
+
title={Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes},
|
75 |
+
author={Lucio Dery and Steven Kolawole and Jean-Francois Kagey and Virginia Smith and Graham Neubig and Ameet Talwalkar},
|
76 |
+
year={2024},
|
77 |
+
eprint={2402.05406},
|
78 |
+
archivePrefix={arXiv},
|
79 |
+
primaryClass={cs.LG}
|
80 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
## Model Card Authors [optional]
|
83 |
|
84 |
+
Lucio Dery: [email protected]
|
85 |
|
86 |
## Model Card Contact
|
87 |
|
88 | |
89 |
|
90 |
|