lucio commited on
Commit
b88e18b
·
1 Parent(s): 7ff15ac

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -36
README.md CHANGED
@@ -1,64 +1,93 @@
1
  ---
2
- language:
3
- - uz
4
  license: apache-2.0
5
  tags:
6
- - automatic-speech-recognition
7
- - mozilla-foundation/common_voice_8_0
8
  - generated_from_trainer
9
- - robust-speech-event
10
  datasets:
11
- - mozilla-foundation/common_voice_8_0
12
  model-index:
13
- - name: XLS-R-300M Uzbek CV8
14
- results:
15
- - task:
16
- name: Automatic Speech Recognition
17
- type: automatic-speech-recognition
18
- dataset:
19
- name: Common Voice 8
20
- type: mozilla-foundation/common_voice_8_0
21
- args: uz
22
- metrics:
23
- - name: Test WER
24
- type: wer
25
- value: 40.56
26
- - name: Test CER
27
- type: cer
28
- value: 8.25
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
  should probably proofread and complete it, then remove this comment. -->
33
 
34
- # XLS-R-300M Uzbek CV8
35
 
36
- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset.
 
 
 
 
37
 
38
  ## Model description
39
 
40
- For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)
41
-
42
- The model vocabulary consists of the [Modern Latin alphabet for Uzbek](https://en.wikipedia.org/wiki/Uzbek_alphabet), with punctuation removed.
43
- Note that the characters ‘ and ’ do not count as punctuation, as ‘ modifies <o> and <g>, and ’ indicates the glottal stop.
44
 
45
  ## Intended uses & limitations
46
 
47
- This model is expected to be of some utility for low-fidelity use cases such as:
48
- - Draft video captions
49
- - Indexing of recorded broadcasts
50
-
51
- The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.
52
 
53
  ## Training and evaluation data
54
 
55
- The 30% of the `train` common voice official split was used as training data. The half of the official `dev` split was used as validation data, and the full `test` set was used for final evaluation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
 
58
  ### Framework versions
59
 
60
- - Transformers 4.17.0.dev0
61
  - Pytorch 1.10.2+cu102
62
  - Datasets 1.18.3
63
  - Tokenizers 0.11.0
64
-
 
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
 
 
4
  - generated_from_trainer
 
5
  datasets:
6
+ - common_voice
7
  model-index:
8
+ - name: xls-r-uzbek-cv8
9
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # xls-r-uzbek-cv8
16
 
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3066
20
+ - Wer: 0.3855
21
+ - Cer: 0.0778
22
 
23
  ## Model description
24
 
25
+ More information needed
 
 
 
26
 
27
  ## Intended uses & limitations
28
 
29
+ More information needed
 
 
 
 
30
 
31
  ## Training and evaluation data
32
 
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 100.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
56
+ | 3.1401 | 3.25 | 500 | 3.1146 | 1.0 | 1.0 |
57
+ | 2.7484 | 6.49 | 1000 | 2.2842 | 1.0065 | 0.7069 |
58
+ | 1.0899 | 9.74 | 1500 | 0.5414 | 0.6125 | 0.1351 |
59
+ | 0.9465 | 12.99 | 2000 | 0.4566 | 0.5635 | 0.1223 |
60
+ | 0.8771 | 16.23 | 2500 | 0.4212 | 0.5366 | 0.1161 |
61
+ | 0.8346 | 19.48 | 3000 | 0.3994 | 0.5144 | 0.1102 |
62
+ | 0.8127 | 22.73 | 3500 | 0.3819 | 0.4944 | 0.1051 |
63
+ | 0.7833 | 25.97 | 4000 | 0.3705 | 0.4798 | 0.1011 |
64
+ | 0.7603 | 29.22 | 4500 | 0.3661 | 0.4704 | 0.0992 |
65
+ | 0.7424 | 32.47 | 5000 | 0.3529 | 0.4577 | 0.0957 |
66
+ | 0.7251 | 35.71 | 5500 | 0.3410 | 0.4473 | 0.0928 |
67
+ | 0.7106 | 38.96 | 6000 | 0.3401 | 0.4428 | 0.0919 |
68
+ | 0.7027 | 42.21 | 6500 | 0.3355 | 0.4353 | 0.0905 |
69
+ | 0.6927 | 45.45 | 7000 | 0.3308 | 0.4296 | 0.0885 |
70
+ | 0.6828 | 48.7 | 7500 | 0.3246 | 0.4204 | 0.0863 |
71
+ | 0.6706 | 51.95 | 8000 | 0.3250 | 0.4233 | 0.0868 |
72
+ | 0.6629 | 55.19 | 8500 | 0.3264 | 0.4159 | 0.0849 |
73
+ | 0.6556 | 58.44 | 9000 | 0.3213 | 0.4100 | 0.0835 |
74
+ | 0.6484 | 61.69 | 9500 | 0.3182 | 0.4124 | 0.0837 |
75
+ | 0.6407 | 64.93 | 10000 | 0.3171 | 0.4050 | 0.0825 |
76
+ | 0.6375 | 68.18 | 10500 | 0.3150 | 0.4039 | 0.0822 |
77
+ | 0.6363 | 71.43 | 11000 | 0.3129 | 0.3991 | 0.0810 |
78
+ | 0.6307 | 74.67 | 11500 | 0.3114 | 0.3986 | 0.0807 |
79
+ | 0.6232 | 77.92 | 12000 | 0.3103 | 0.3895 | 0.0790 |
80
+ | 0.6216 | 81.17 | 12500 | 0.3086 | 0.3891 | 0.0790 |
81
+ | 0.6174 | 84.41 | 13000 | 0.3082 | 0.3881 | 0.0785 |
82
+ | 0.6196 | 87.66 | 13500 | 0.3059 | 0.3875 | 0.0782 |
83
+ | 0.6174 | 90.91 | 14000 | 0.3084 | 0.3862 | 0.0780 |
84
+ | 0.6169 | 94.16 | 14500 | 0.3070 | 0.3860 | 0.0779 |
85
+ | 0.6166 | 97.4 | 15000 | 0.3066 | 0.3855 | 0.0778 |
86
 
87
 
88
  ### Framework versions
89
 
90
+ - Transformers 4.16.2
91
  - Pytorch 1.10.2+cu102
92
  - Datasets 1.18.3
93
  - Tokenizers 0.11.0