lucio commited on
Commit
4d253b0
·
1 Parent(s): ad65a58

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: xls-r-kyrgiz-cv8
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # xls-r-kyrgiz-cv8
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5495
20
+ - Wer: 0.2951
21
+ - Cer: 0.0789
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 300.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
55
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
56
+ | 3.1079 | 18.51 | 500 | 2.6795 | 0.9996 | 0.9825 |
57
+ | 0.8506 | 37.04 | 1000 | 0.4323 | 0.3718 | 0.0961 |
58
+ | 0.6821 | 55.55 | 1500 | 0.4105 | 0.3311 | 0.0878 |
59
+ | 0.6091 | 74.07 | 2000 | 0.4281 | 0.3168 | 0.0851 |
60
+ | 0.5429 | 92.58 | 2500 | 0.4525 | 0.3147 | 0.0842 |
61
+ | 0.5063 | 111.11 | 3000 | 0.4619 | 0.3144 | 0.0839 |
62
+ | 0.4661 | 129.62 | 3500 | 0.4660 | 0.3039 | 0.0818 |
63
+ | 0.4353 | 148.15 | 4000 | 0.4695 | 0.3083 | 0.0820 |
64
+ | 0.4048 | 166.65 | 4500 | 0.4909 | 0.3085 | 0.0824 |
65
+ | 0.3852 | 185.18 | 5000 | 0.5074 | 0.3048 | 0.0812 |
66
+ | 0.3567 | 203.69 | 5500 | 0.5111 | 0.3012 | 0.0810 |
67
+ | 0.3451 | 222.22 | 6000 | 0.5225 | 0.2982 | 0.0804 |
68
+ | 0.325 | 240.73 | 6500 | 0.5270 | 0.2955 | 0.0796 |
69
+ | 0.3089 | 259.25 | 7000 | 0.5381 | 0.2929 | 0.0793 |
70
+ | 0.2941 | 277.76 | 7500 | 0.5565 | 0.2923 | 0.0794 |
71
+ | 0.2945 | 296.29 | 8000 | 0.5495 | 0.2951 | 0.0789 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.17.0.dev0
77
+ - Pytorch 1.10.2+cu102
78
+ - Datasets 1.18.3
79
+ - Tokenizers 0.11.0