File size: 5,120 Bytes
f8903fb 0c63c7e f8903fb 8234e1e f8903fb 53ad625 f8903fb 53ad625 f8903fb 3d92921 f8903fb 320a6a7 f8903fb 3d92921 f8903fb c5232e0 f8903fb db6e8b5 f8903fb db6e8b5 f8903fb 3d92921 f8903fb db6e8b5 f8903fb db6e8b5 f8903fb 3d92921 f8903fb 3d92921 f8903fb 3d92921 f8903fb db6e8b5 f8903fb 53ad625 f8903fb 53ad625 f8903fb 53ad625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
language: lg
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Large Luganda by Lucio
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice lg
type: common_voice
args: lg
metrics:
- name: Test WER
type: wer
value: 29.52
---
# Wav2Vec2-Large-XLSR-53-lg
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, using train, validation and other (excluding voices that are in the test set), and taking the test data for validation as well as test.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lg", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Luganda test data of Common Voice. (Available in Colab [here](https://colab.research.google.com/drive/1XxZ3mJOEXwIn-QH3C23jD_Qpom9aA1vH?usp=sharing).)
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import unidecode
test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")
model.to("cuda")
chars_to_ignore_regex = '[\[\],?.!;:%"“”(){}‟ˮʺ″«»/…‽�–]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
def remove_special_characters(batch):
# word-internal apostrophes are marking contractions
batch["norm_text"] = re.sub(r'[‘’´`]', r"'", batch["sentence"])
# most other punctuation is ignored
batch["norm_text"] = re.sub(chars_to_ignore_regex, "", batch["norm_text"]).lower().strip()
batch["norm_text"] = re.sub(r"(-|' | '| +)", " ", batch["norm_text"])
# remove accents from a few characters (from loanwords, not tones)
batch["norm_text"] = unidecode.unidecode(batch["norm_text"])
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
test_dataset = test_dataset.map(remove_special_characters)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["norm_text"])))
```
**Test Result**: 29.52 %
## Training
The Common Voice `train`, `validation` and `other` datasets were used for training, excluding voices that are in both the `other` and `test` datasets. The data was augmented to twice the original size with added noise and manipulated pitch, phase and intensity.
Training proceeded for 60 epochs, on 1 V100 GPU provided by OVHcloud. The `test` data was used for validation.
The [script used for training](https://github.com/serapio/transformers/blob/feature/xlsr-finetune/examples/research_projects/wav2vec2/run_common_voice.py) is adapted from the [example script provided in the transformers repo](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py). |