lucio commited on
Commit
8b72146
·
1 Parent(s): ebeaa98

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: rw
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: XLSR Wav2Vec2 Large Kinyarwanda with apostrophes
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice rw
21
+ type: common_voice
22
+ args: rw
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 39.92
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-rw
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kinyarwanda using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, using about 25% of the training data (limited to utterances without downvotes and shorter with 9.5 seconds), and validated on 2048 utterances from the validation set. In contrast to the [lucio/wav2vec2-large-xlsr-kinyarwanda](https://huggingface.co/lucio/wav2vec2-large-xlsr-kinyarwanda) model, which does not predict any punctuation, this model attempts to predict the apostrophes that mark contractions of pronouns with vowel-initial words, but may overgeneralize.
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import torch
40
+ import torchaudio
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+
44
+ # WARNING! This will download and extract to use about 80GB on disk.
45
+ test_dataset = load_dataset("common_voice", "rw", split="test[:2%]")
46
+
47
+ processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda")
48
+ model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda")
49
+
50
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
+
52
+ # Preprocessing the datasets.
53
+ # We need to read the audio files as arrays
54
+ def speech_file_to_array_fn(batch):
55
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ return batch
58
+
59
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
60
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
61
+
62
+ with torch.no_grad():
63
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
+
65
+ predicted_ids = torch.argmax(logits, dim=-1)
66
+
67
+ print("Prediction:", processor.batch_decode(predicted_ids))
68
+ print("Reference:", test_dataset["sentence"][:2])
69
+ ```
70
+
71
+ Result:
72
+ ```
73
+ Prediction: ['yaherukago gukora igitaramo yiki mujyiwa na mor mu bubiligi', "ibi rero ntibizashoboka kandi n'umudabizi"]
74
+ Reference: ['Yaherukaga gukora igitaramo nk’iki mu Mujyi wa Namur mu Bubiligi.', 'Ibi rero, ntibizashoboka, kandi nawe arabizi.']
75
+ ```
76
+
77
+ ## Evaluation
78
+
79
+ The model can be evaluated as follows on the Kinyarwanda test data of Common Voice. Note that to even load the test data, the whole 40GB Kinyarwanda dataset will be downloaded and extracted into another 40GB directory, so you will need that space available on disk (e.g. not possible in the free tier of Google Colab). This script uses the `chunked_wer` function from [pcuenq](https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es).
80
+
81
+
82
+ ```python
83
+ import jiwer
84
+ import torch
85
+ import torchaudio
86
+ from datasets import load_dataset, load_metric
87
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
88
+ import re
89
+ import unidecode
90
+
91
+ test_dataset = load_dataset("common_voice", "rw", split="test")
92
+ wer = load_metric("wer")
93
+
94
+ processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda-apostrophied")
95
+ model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda-apostrophied")
96
+ model.to("cuda")
97
+
98
+ chars_to_ignore_regex = r'[!"#$%&()*+,./:;<=>?@\[\]\\_{}|~£¤¨©ª«¬®¯°·¸»¼½¾ðʺ˜˝ˮ‐–—―‚“”„‟•…″‽₋€™−√�]'
99
+
100
+ def remove_special_characters(batch):
101
+ batch["text"] = re.sub(r'[ʻʽʼ‘’´`]', r"'", batch["sentence"]) # normalize apostrophes
102
+ batch["text"] = re.sub(chars_to_ignore_regex, "", batch["text"]).lower().strip() # remove all other punctuation
103
+ batch["text"] = re.sub(r"([b-df-hj-np-tv-z])' ([aeiou])", r"\1'\2", batch["text"]) # remove spaces where apostrophe marks a deleted vowel
104
+ batch["text"] = re.sub(r"(-| '|' | +)", " ", batch["text"]) # treat dash and other apostrophes as word boundary
105
+ batch["text"] = unidecode.unidecode(batch["text"]) # strip accents from loanwords
106
+ return batch
107
+
108
+ ## Audio pre-processing
109
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
110
+
111
+ def speech_file_to_array_fn(batch):
112
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
113
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
114
+ batch["sampling_rate"] = 16_000
115
+ return batch
116
+
117
+ def cv_prepare(batch):
118
+ batch = remove_special_characters(batch)
119
+ batch = speech_file_to_array_fn(batch)
120
+ return batch
121
+
122
+ test_dataset = test_dataset.map(cv_prepare)
123
+
124
+ # Preprocessing the datasets.
125
+ # We need to read the audio files as arrays
126
+ def evaluate(batch):
127
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
128
+
129
+ with torch.no_grad():
130
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
131
+
132
+ pred_ids = torch.argmax(logits, dim=-1)
133
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
134
+ return batch
135
+
136
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
137
+
138
+ def chunked_wer(targets, predictions, chunk_size=None):
139
+ if chunk_size is None: return jiwer.wer(targets, predictions)
140
+ start = 0
141
+ end = chunk_size
142
+ H, S, D, I = 0, 0, 0, 0
143
+ while start < len(targets):
144
+ chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
145
+ H = H + chunk_metrics["hits"]
146
+ S = S + chunk_metrics["substitutions"]
147
+ D = D + chunk_metrics["deletions"]
148
+ I = I + chunk_metrics["insertions"]
149
+ start += chunk_size
150
+ end += chunk_size
151
+ return float(S + D + I) / float(H + S + D)
152
+
153
+ print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
154
+ ```
155
+
156
+ **Test Result**: 39.92 %
157
+
158
+
159
+ ## Training
160
+
161
+ Examples from the Common Voice training dataset were used for training, after filtering out utterances that had any `down_vote` or were longer than 9.5 seconds. The data used totals about 125k examples, 25% of the available data, trained on 1 V100 GPU provided by OVHcloud, for a total of about 60 hours: 20 epochs on one block of 32k examples and then 10 epochs each on 3 more blocks of 32k examples. For validation, 2048 examples of the validation dataset were used.
162
+
163
+ The [script used for training](https://github.com/serapio/transformers/blob/feature/xlsr-finetune/examples/research_projects/wav2vec2/run_common_voice.py) is adapted from the [example script provided in the transformers repo](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py).