luanafelbarros commited on
Commit
129b493
1 Parent(s): eaf0e1f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3560698
8
+ - loss:ModifiedMatryoshkaLoss
9
+ base_model: google-bert/bert-base-multilingual-cased
10
+ widget:
11
+ - source_sentence: This is a mine in Zimbabwe right now.
12
+ sentences:
13
+ - Esta es una mina de Zimbabwe en este momento.
14
+ - Transformar eso en una respuesta con forma matemática.
15
+ - Centrarse en el liderazgo, la diplomacia y el diseño institucional ayuda también
16
+ a explicar los intentos de paz que fracasan, o que no perduran.
17
+ - source_sentence: '"You want me to deliver human rights throughout my global supply
18
+ chain.'
19
+ sentences:
20
+ - '"Quieres que respete los Derechos Humanos en la cadena mundial de suministro.'
21
+ - ¿Qué queremos decir cuando decimos que hacemos matemática... ...o que enseñamos
22
+ matemática?
23
+ - Así que criamos moscas cuyos cerebros fueron salpicados más o menos al azar con
24
+ células direccionables por la luz.
25
+ - source_sentence: Figure out some of the other options that are much better.
26
+ sentences:
27
+ - En Kirguistán, en las últimas semanas, ocurrieron niveles de violencia sin precedentes
28
+ entre los kirguíes étnicos y los uzbecos étnicos.
29
+ - Piensen en otras de las opciones que son mucho mejores.
30
+ - La película sale -- la película es una versión en película de la presentación
31
+ de las diapositivas que di hace dos noches, excepto que es mucho más entretenida.
32
+ - source_sentence: I've become very close with them, and they've welcomed me like
33
+ family.
34
+ sentences:
35
+ - he logrado una relación estrecha con ellos; soy como de la familia.
36
+ - O que los oídos se oigan a sí mismos... simplemente es imposible;
37
+ - Es un producto farmacéutico.
38
+ - source_sentence: All the grayed-out species disappear.
39
+ sentences:
40
+ - 'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".'
41
+ - Hay un vacío total de capital creativo en Bertie.
42
+ - Van a desaparecer todas las especies en gris.
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - negative_mse
47
+ model-index:
48
+ - name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
49
+ results:
50
+ - task:
51
+ type: knowledge-distillation
52
+ name: Knowledge Distillation
53
+ dataset:
54
+ name: MSE val en es
55
+ type: MSE-val-en-es
56
+ metrics:
57
+ - type: negative_mse
58
+ value: -33.77506732940674
59
+ name: Negative Mse
60
+ - task:
61
+ type: knowledge-distillation
62
+ name: Knowledge Distillation
63
+ dataset:
64
+ name: MSE val en pt
65
+ type: MSE-val-en-pt
66
+ metrics:
67
+ - type: negative_mse
68
+ value: -34.092217683792114
69
+ name: Negative Mse
70
+ - task:
71
+ type: knowledge-distillation
72
+ name: Knowledge Distillation
73
+ dataset:
74
+ name: MSE val en pt br
75
+ type: MSE-val-en-pt-br
76
+ metrics:
77
+ - type: negative_mse
78
+ value: -32.07869827747345
79
+ name: Negative Mse
80
+ ---
81
+
82
+ # SentenceTransformer based on google-bert/bert-base-multilingual-cased
83
+
84
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
85
+
86
+ ## Model Details
87
+
88
+ ### Model Description
89
+ - **Model Type:** Sentence Transformer
90
+ - **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
91
+ - **Maximum Sequence Length:** 128 tokens
92
+ - **Output Dimensionality:** 768 dimensions
93
+ - **Similarity Function:** Cosine Similarity
94
+ <!-- - **Training Dataset:** Unknown -->
95
+ <!-- - **Language:** Unknown -->
96
+ <!-- - **License:** Unknown -->
97
+
98
+ ### Model Sources
99
+
100
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
101
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
102
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
103
+
104
+ ### Full Model Architecture
105
+
106
+ ```
107
+ SentenceTransformer(
108
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
109
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
110
+ )
111
+ ```
112
+
113
+ ## Usage
114
+
115
+ ### Direct Usage (Sentence Transformers)
116
+
117
+ First install the Sentence Transformers library:
118
+
119
+ ```bash
120
+ pip install -U sentence-transformers
121
+ ```
122
+
123
+ Then you can load this model and run inference.
124
+ ```python
125
+ from sentence_transformers import SentenceTransformer
126
+
127
+ # Download from the 🤗 Hub
128
+ model = SentenceTransformer("luanafelbarros/bert-en-es-pt-matryoshka_v3")
129
+ # Run inference
130
+ sentences = [
131
+ 'All the grayed-out species disappear.',
132
+ 'Van a desaparecer todas las especies en gris.',
133
+ 'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".',
134
+ ]
135
+ embeddings = model.encode(sentences)
136
+ print(embeddings.shape)
137
+ # [3, 768]
138
+
139
+ # Get the similarity scores for the embeddings
140
+ similarities = model.similarity(embeddings, embeddings)
141
+ print(similarities.shape)
142
+ # [3, 3]
143
+ ```
144
+
145
+ <!--
146
+ ### Direct Usage (Transformers)
147
+
148
+ <details><summary>Click to see the direct usage in Transformers</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Downstream Usage (Sentence Transformers)
155
+
156
+ You can finetune this model on your own dataset.
157
+
158
+ <details><summary>Click to expand</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Out-of-Scope Use
165
+
166
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
167
+ -->
168
+
169
+ ## Evaluation
170
+
171
+ ### Metrics
172
+
173
+ #### Knowledge Distillation
174
+
175
+ * Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br`
176
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
177
+
178
+ | Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
179
+ |:-----------------|:--------------|:--------------|:-----------------|
180
+ | **negative_mse** | **-33.7751** | **-34.0922** | **-32.0787** |
181
+
182
+ <!--
183
+ ## Bias, Risks and Limitations
184
+
185
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
186
+ -->
187
+
188
+ <!--
189
+ ### Recommendations
190
+
191
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
192
+ -->
193
+
194
+ ## Training Details
195
+
196
+ ### Training Dataset
197
+
198
+ #### Unnamed Dataset
199
+
200
+
201
+ * Size: 3,560,698 training samples
202
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
203
+ * Approximate statistics based on the first 1000 samples:
204
+ | | english | non_english | label |
205
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
206
+ | type | string | string | list |
207
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
208
+ * Samples:
209
+ | english | non_english | label |
210
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
211
+ | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code> |
212
+ | <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> |
213
+ | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[-0.01942082867026329, 0.1043599545955658, 0.009455358609557152, -0.02814248949289322, -0.017036128789186478, ...]</code> |
214
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
215
+ ```json
216
+ {
217
+ "loss": "MSELoss",
218
+ "matryoshka_dims": [
219
+ 768,
220
+ 512,
221
+ 256,
222
+ 128,
223
+ 64
224
+ ],
225
+ "matryoshka_weights": [
226
+ 1,
227
+ 1,
228
+ 1,
229
+ 1,
230
+ 1
231
+ ],
232
+ "n_dims_per_step": -1
233
+ }
234
+ ```
235
+
236
+ ### Evaluation Dataset
237
+
238
+ #### Unnamed Dataset
239
+
240
+
241
+ * Size: 6,974 evaluation samples
242
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
243
+ * Approximate statistics based on the first 1000 samples:
244
+ | | english | non_english | label |
245
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
246
+ | type | string | string | list |
247
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
248
+ * Samples:
249
+ | english | non_english | label |
250
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
251
+ | <code>Thank you so much, Chris.</code> | <code>Muchas gracias Chris.</code> | <code>[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]</code> |
252
+ | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]</code> |
253
+ | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
254
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
255
+ ```json
256
+ {
257
+ "loss": "MSELoss",
258
+ "matryoshka_dims": [
259
+ 768,
260
+ 512,
261
+ 256,
262
+ 128,
263
+ 64
264
+ ],
265
+ "matryoshka_weights": [
266
+ 1,
267
+ 1,
268
+ 1,
269
+ 1,
270
+ 1
271
+ ],
272
+ "n_dims_per_step": -1
273
+ }
274
+ ```
275
+
276
+ ### Training Hyperparameters
277
+ #### Non-Default Hyperparameters
278
+
279
+ - `eval_strategy`: steps
280
+ - `per_device_train_batch_size`: 200
281
+ - `per_device_eval_batch_size`: 200
282
+ - `learning_rate`: 2e-05
283
+ - `num_train_epochs`: 2
284
+ - `warmup_ratio`: 0.1
285
+ - `fp16`: True
286
+ - `label_names`: ['label']
287
+
288
+ #### All Hyperparameters
289
+ <details><summary>Click to expand</summary>
290
+
291
+ - `overwrite_output_dir`: False
292
+ - `do_predict`: False
293
+ - `eval_strategy`: steps
294
+ - `prediction_loss_only`: True
295
+ - `per_device_train_batch_size`: 200
296
+ - `per_device_eval_batch_size`: 200
297
+ - `per_gpu_train_batch_size`: None
298
+ - `per_gpu_eval_batch_size`: None
299
+ - `gradient_accumulation_steps`: 1
300
+ - `eval_accumulation_steps`: None
301
+ - `torch_empty_cache_steps`: None
302
+ - `learning_rate`: 2e-05
303
+ - `weight_decay`: 0.0
304
+ - `adam_beta1`: 0.9
305
+ - `adam_beta2`: 0.999
306
+ - `adam_epsilon`: 1e-08
307
+ - `max_grad_norm`: 1.0
308
+ - `num_train_epochs`: 2
309
+ - `max_steps`: -1
310
+ - `lr_scheduler_type`: linear
311
+ - `lr_scheduler_kwargs`: {}
312
+ - `warmup_ratio`: 0.1
313
+ - `warmup_steps`: 0
314
+ - `log_level`: passive
315
+ - `log_level_replica`: warning
316
+ - `log_on_each_node`: True
317
+ - `logging_nan_inf_filter`: True
318
+ - `save_safetensors`: True
319
+ - `save_on_each_node`: False
320
+ - `save_only_model`: False
321
+ - `restore_callback_states_from_checkpoint`: False
322
+ - `no_cuda`: False
323
+ - `use_cpu`: False
324
+ - `use_mps_device`: False
325
+ - `seed`: 42
326
+ - `data_seed`: None
327
+ - `jit_mode_eval`: False
328
+ - `use_ipex`: False
329
+ - `bf16`: False
330
+ - `fp16`: True
331
+ - `fp16_opt_level`: O1
332
+ - `half_precision_backend`: auto
333
+ - `bf16_full_eval`: False
334
+ - `fp16_full_eval`: False
335
+ - `tf32`: None
336
+ - `local_rank`: 0
337
+ - `ddp_backend`: None
338
+ - `tpu_num_cores`: None
339
+ - `tpu_metrics_debug`: False
340
+ - `debug`: []
341
+ - `dataloader_drop_last`: False
342
+ - `dataloader_num_workers`: 0
343
+ - `dataloader_prefetch_factor`: None
344
+ - `past_index`: -1
345
+ - `disable_tqdm`: False
346
+ - `remove_unused_columns`: True
347
+ - `label_names`: ['label']
348
+ - `load_best_model_at_end`: False
349
+ - `ignore_data_skip`: False
350
+ - `fsdp`: []
351
+ - `fsdp_min_num_params`: 0
352
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
353
+ - `fsdp_transformer_layer_cls_to_wrap`: None
354
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
355
+ - `deepspeed`: None
356
+ - `label_smoothing_factor`: 0.0
357
+ - `optim`: adamw_torch
358
+ - `optim_args`: None
359
+ - `adafactor`: False
360
+ - `group_by_length`: False
361
+ - `length_column_name`: length
362
+ - `ddp_find_unused_parameters`: None
363
+ - `ddp_bucket_cap_mb`: None
364
+ - `ddp_broadcast_buffers`: False
365
+ - `dataloader_pin_memory`: True
366
+ - `dataloader_persistent_workers`: False
367
+ - `skip_memory_metrics`: True
368
+ - `use_legacy_prediction_loop`: False
369
+ - `push_to_hub`: False
370
+ - `resume_from_checkpoint`: None
371
+ - `hub_model_id`: None
372
+ - `hub_strategy`: every_save
373
+ - `hub_private_repo`: False
374
+ - `hub_always_push`: False
375
+ - `gradient_checkpointing`: False
376
+ - `gradient_checkpointing_kwargs`: None
377
+ - `include_inputs_for_metrics`: False
378
+ - `include_for_metrics`: []
379
+ - `eval_do_concat_batches`: True
380
+ - `fp16_backend`: auto
381
+ - `push_to_hub_model_id`: None
382
+ - `push_to_hub_organization`: None
383
+ - `mp_parameters`:
384
+ - `auto_find_batch_size`: False
385
+ - `full_determinism`: False
386
+ - `torchdynamo`: None
387
+ - `ray_scope`: last
388
+ - `ddp_timeout`: 1800
389
+ - `torch_compile`: False
390
+ - `torch_compile_backend`: None
391
+ - `torch_compile_mode`: None
392
+ - `dispatch_batches`: None
393
+ - `split_batches`: None
394
+ - `include_tokens_per_second`: False
395
+ - `include_num_input_tokens_seen`: False
396
+ - `neftune_noise_alpha`: None
397
+ - `optim_target_modules`: None
398
+ - `batch_eval_metrics`: False
399
+ - `eval_on_start`: False
400
+ - `use_liger_kernel`: False
401
+ - `eval_use_gather_object`: False
402
+ - `average_tokens_across_devices`: False
403
+ - `prompts`: None
404
+ - `batch_sampler`: batch_sampler
405
+ - `multi_dataset_batch_sampler`: proportional
406
+
407
+ </details>
408
+
409
+ ### Training Logs
410
+ | Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
411
+ |:------:|:-----:|:-------------:|:---------------:|:--------------------------:|:--------------------------:|:-----------------------------:|
412
+ | 0.0562 | 1000 | 0.0283 | 0.0251 | -22.4432 | -22.0406 | -25.1401 |
413
+ | 0.1123 | 2000 | 0.0241 | 0.0227 | -24.1255 | -23.9880 | -24.7731 |
414
+ | 0.1685 | 3000 | 0.0224 | 0.0214 | -25.3630 | -25.2889 | -25.4316 |
415
+ | 0.2247 | 4000 | 0.0214 | 0.0205 | -27.9225 | -28.0038 | -27.3050 |
416
+ | 0.2808 | 5000 | 0.0206 | 0.0199 | -29.4189 | -29.5093 | -28.8545 |
417
+ | 0.3370 | 6000 | 0.0202 | 0.0194 | -30.3190 | -30.4212 | -29.4919 |
418
+ | 0.3932 | 7000 | 0.0198 | 0.0191 | -31.3278 | -31.4753 | -30.3090 |
419
+ | 0.4493 | 8000 | 0.0195 | 0.0188 | -31.4089 | -31.6387 | -30.3325 |
420
+ | 0.5055 | 9000 | 0.0193 | 0.0186 | -32.0598 | -32.2536 | -30.9067 |
421
+ | 0.5617 | 10000 | 0.0191 | 0.0184 | -32.0989 | -32.2766 | -31.0155 |
422
+ | 0.6178 | 11000 | 0.0189 | 0.0183 | -32.2449 | -32.4302 | -30.9863 |
423
+ | 0.6740 | 12000 | 0.0187 | 0.0181 | -32.5800 | -32.8070 | -31.2254 |
424
+ | 0.7302 | 13000 | 0.0186 | 0.0180 | -32.9225 | -33.1228 | -31.5803 |
425
+ | 0.7863 | 14000 | 0.0185 | 0.0179 | -32.9227 | -33.1304 | -31.5169 |
426
+ | 0.8425 | 15000 | 0.0184 | 0.0178 | -33.0181 | -33.2681 | -31.5791 |
427
+ | 0.8987 | 16000 | 0.0183 | 0.0177 | -33.1309 | -33.3638 | -31.6113 |
428
+ | 0.9548 | 17000 | 0.0182 | 0.0176 | -33.1635 | -33.4414 | -31.6507 |
429
+ | 1.0110 | 18000 | 0.0181 | 0.0175 | -33.3615 | -33.6376 | -31.8086 |
430
+ | 1.0672 | 19000 | 0.018 | 0.0175 | -33.5781 | -33.8775 | -32.0611 |
431
+ | 1.1233 | 20000 | 0.0179 | 0.0174 | -33.5645 | -33.8531 | -32.0438 |
432
+ | 1.1795 | 21000 | 0.0179 | 0.0173 | -33.6646 | -33.9817 | -32.0500 |
433
+ | 1.2357 | 22000 | 0.0179 | 0.0173 | -33.7056 | -34.0088 | -32.1065 |
434
+ | 1.2918 | 23000 | 0.0178 | 0.0173 | -33.7397 | -34.0153 | -32.1810 |
435
+ | 1.3480 | 24000 | 0.0178 | 0.0172 | -33.7863 | -34.0887 | -32.1103 |
436
+ | 1.4042 | 25000 | 0.0177 | 0.0172 | -33.7981 | -34.0863 | -32.1683 |
437
+ | 1.4603 | 26000 | 0.0177 | 0.0171 | -33.7458 | -34.0451 | -32.0611 |
438
+ | 1.5165 | 27000 | 0.0177 | 0.0171 | -33.7650 | -34.0652 | -32.1565 |
439
+ | 1.5727 | 28000 | 0.0176 | 0.0171 | -33.7347 | -34.0446 | -32.0698 |
440
+ | 1.6288 | 29000 | 0.0176 | 0.0171 | -33.8011 | -34.1169 | -32.0683 |
441
+ | 1.6850 | 30000 | 0.0176 | 0.0170 | -33.7949 | -34.1010 | -32.1128 |
442
+ | 1.7412 | 31000 | 0.0176 | 0.0170 | -33.7713 | -34.0857 | -32.1020 |
443
+ | 1.7973 | 32000 | 0.0176 | 0.0170 | -33.8393 | -34.1676 | -32.1371 |
444
+ | 1.8535 | 33000 | 0.0175 | 0.0170 | -33.7687 | -34.0887 | -32.0748 |
445
+ | 1.9097 | 34000 | 0.0175 | 0.0170 | -33.7614 | -34.0854 | -32.0550 |
446
+ | 1.9659 | 35000 | 0.0175 | 0.0170 | -33.7751 | -34.0922 | -32.0787 |
447
+
448
+
449
+ ### Framework Versions
450
+ - Python: 3.10.12
451
+ - Sentence Transformers: 3.3.1
452
+ - Transformers: 4.46.3
453
+ - PyTorch: 2.5.1+cu121
454
+ - Accelerate: 1.1.1
455
+ - Datasets: 3.1.0
456
+ - Tokenizers: 0.20.3
457
+
458
+ ## Citation
459
+
460
+ ### BibTeX
461
+
462
+ #### Sentence Transformers
463
+ ```bibtex
464
+ @inproceedings{reimers-2019-sentence-bert,
465
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
466
+ author = "Reimers, Nils and Gurevych, Iryna",
467
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
468
+ month = "11",
469
+ year = "2019",
470
+ publisher = "Association for Computational Linguistics",
471
+ url = "https://arxiv.org/abs/1908.10084",
472
+ }
473
+ ```
474
+
475
+ <!--
476
+ ## Glossary
477
+
478
+ *Clearly define terms in order to be accessible across audiences.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Authors
483
+
484
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Contact
489
+
490
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
491
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.46.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 119547
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb3a2efcc34f1e9153c6bdc7faf9162c9c9f547ff61d4b37dbf7ab91d0f498c
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff