File size: 30,665 Bytes
900d7b0
 
 
 
 
 
a4479da
900d7b0
 
 
 
 
 
a4479da
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
 
900d7b0
 
 
9b07ad6
a4479da
 
 
 
 
 
900d7b0
a4479da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
900d7b0
 
 
a4479da
900d7b0
 
 
 
 
 
 
 
a4479da
 
900d7b0
 
a4479da
 
 
 
 
670918f
a4479da
 
 
 
 
 
 
900d7b0
a4479da
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
900d7b0
a4479da
 
900d7b0
 
 
 
 
 
a4479da
 
900d7b0
 
 
a4479da
900d7b0
 
 
a4479da
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
900d7b0
 
 
a4479da
 
 
 
 
 
 
 
 
9b07ad6
 
a4479da
 
9b07ad6
 
a4479da
 
 
 
900d7b0
 
 
 
 
 
 
 
 
a4479da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900d7b0
a4479da
 
900d7b0
a4479da
900d7b0
 
 
 
 
 
 
 
9b07ad6
 
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
900d7b0
 
 
 
 
 
 
 
 
a4479da
900d7b0
 
 
 
 
a4479da
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
 
 
 
 
900d7b0
 
a4479da
 
900d7b0
 
 
a4479da
 
 
 
 
 
 
 
 
900d7b0
502858a
900d7b0
 
 
 
 
 
 
 
a4479da
900d7b0
 
a4479da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900d7b0
 
 
 
 
 
 
a4479da
 
 
 
 
 
900d7b0
 
 
 
 
 
a4479da
 
 
 
 
 
 
 
 
 
 
 
 
 
900d7b0
 
a4479da
 
900d7b0
a4479da
 
 
 
 
 
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670918f
900d7b0
 
 
a4479da
 
 
 
 
 
 
 
 
900d7b0
 
 
 
 
 
 
 
 
a4479da
 
 
 
900d7b0
 
 
a4479da
 
900d7b0
 
 
a4479da
900d7b0
 
 
 
 
a4479da
 
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
900d7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4479da
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import softmax_backward_data
from torch.utils import checkpoint

from configuration_nort5 import NorT5Config
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import gelu_new
from transformers.modeling_outputs import (
    Seq2SeqModelOutput, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions
)


class Encoder(nn.Module):
    def __init__(self, config, activation_checkpointing=False):
        super().__init__()
        self.main_input_name = "input_ids"

        self.relative_embedding = RelativeEmbedding(config)
        self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])

        for i, layer in enumerate(self.layers):
            layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
            layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))

        self.activation_checkpointing = activation_checkpointing
    
    def forward(self, hidden_states, attention_mask):
        relative_embedding = self.relative_embedding()
        hidden_states, attention_probs = [hidden_states], []

        for layer in self.layers:
            if self.activation_checkpointing:
                hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
            else:
                hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)

            hidden_states.append(hidden_state)
            attention_probs.append(attention_p)

        return hidden_states, attention_probs


class Decoder(nn.Module):
    def __init__(self, config, activation_checkpointing=False):
        super().__init__()
        self.self_relative_embedding = RelativeEmbedding(config)
        self.cross_relative_embedding = RelativeEmbedding(config)
        self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])

        for i, layer in enumerate(self.layers):
            layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
            layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))

        self.activation_checkpointing = activation_checkpointing

    def forward(self, x, encoder_output, encoder_padding_mask, past_key_values=None):
        self_relative_embedding = self.self_relative_embedding()
        cross_relative_embedding = self.cross_relative_embedding()

        if past_key_values is None:
            autoreg_mask = torch.triu(
                torch.full((x.size(0), x.size(0)), True, device=x.device),
                diagonal=1
            )
        else:
            autoreg_mask = None

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.layers)

        hidden_states, self_attention_probs, cross_attention_probs, key_value_states = [x], [], [], []
        for layer, past_key_value in zip(self.layers, past_key_values):
            if self.activation_checkpointing:
                hidden_state, self_attention_p, cross_attention_p, key_value_state = checkpoint.checkpoint(layer, hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None)
            else:
                hidden_state, self_attention_p, cross_attention_p, key_value_state = layer(hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=past_key_value)

            hidden_states.append(hidden_state)
            self_attention_probs.append(self_attention_p)
            cross_attention_probs.append(cross_attention_p)
            key_value_states.append(key_value_state)

        return hidden_states, self_attention_probs, cross_attention_probs, key_value_states


class MaskClassifier(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.nonlinearity = nn.Sequential(
            nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
            nn.Dropout(config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, config.vocab_size)
        )
        self.initialize(config.hidden_size)

    def initialize(self, hidden_size):
        std = math.sqrt(2.0 / (5.0 * hidden_size))
        nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
        self.nonlinearity[-1].bias.data.zero_()

    def forward(self, x):
        x = self.nonlinearity(x)
        return x


class EncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = Attention(config, is_cross_attention=False)
        self.mlp = FeedForward(config)

    def forward(self, x, padding_mask, relative_embedding):
        attention_output, attention_probs, _ = self.attention(x, x, padding_mask, relative_embedding)
        x = x + attention_output
        x = x + self.mlp(x)
        return x, attention_probs


class DecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attention = Attention(config, is_cross_attention=False)
        self.cross_attention = Attention(config, is_cross_attention=True)
        self.mlp = FeedForward(config)

    def forward(self, x, autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None):
        query_offset = 0
        if past_key_value is not None:
            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
            query_offset = self_attn_past_key_value[0].size(2)
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        x_, self_attention_probs, self_key_value_state = self.self_attention(x, x, autoreg_mask, self_relative_embedding, past_key_value=self_attn_past_key_value, query_offset=query_offset)
        x = x + x_
        x_, cross_attention_probs, cross_key_value_state = self.cross_attention(x, encoder_output, encoder_padding_mask, cross_relative_embedding, past_key_value=cross_attn_past_key_value, query_offset=query_offset)
        x = x + x_
        x = x + self.mlp(x)

        return x, self_attention_probs, cross_attention_probs, self_key_value_state + cross_key_value_state


class GeGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        x = x * gelu_new(gate)
        return x


class FeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
            GeGLU(),
            nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
            nn.Dropout(config.hidden_dropout_prob)
        )
        self.initialize(config.hidden_size)

    def initialize(self, hidden_size):
        std = math.sqrt(2.0 / (5.0 * hidden_size))
        nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)

    def forward(self, x):
        return self.mlp(x)


class MaskedSoftmax(torch.autograd.Function):
    @staticmethod
    def forward(self, x, mask, dim):
        self.dim = dim
        if mask is not None:
            x.masked_fill_(mask, float('-inf'))
        x = torch.softmax(x, self.dim)
        if mask is not None:
            x.masked_fill_(mask, 0.0)
        self.save_for_backward(x)
        return x

    @staticmethod
    def backward(self, grad_output):
        output, = self.saved_tensors
        input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
        return input_grad, None, None


class Attention(nn.Module):
    def __init__(self, config, is_cross_attention=False):
        super().__init__()

        self.config = config
        self.is_cross_attention = is_cross_attention

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // config.num_attention_heads

        self.in_proj_q = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
        self.in_proj_k = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
        self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
        self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)

        self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
        self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)

        position_indices = torch.arange(512, dtype=torch.long).unsqueeze(1) \
            - torch.arange(512, dtype=torch.long).unsqueeze(0)
        position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, 512)
        position_indices = config.position_bucket_size - 1 + position_indices
        self.register_buffer("position_indices", position_indices, persistent=True)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.scale = 1.0 / math.sqrt(3 * self.head_size)
        self.initialize()

    def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
        sign = torch.sign(relative_pos)
        mid = bucket_size // 2
        abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
        log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
        bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
        return bucket_pos

    def initialize(self):
        std = math.sqrt(2.0 / (5.0 * self.hidden_size))
        nn.init.trunc_normal_(self.in_proj_q.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.in_proj_k.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        self.in_proj_q.bias.data.zero_()
        self.in_proj_k.bias.data.zero_()
        self.in_proj_v.bias.data.zero_()
        self.out_proj.bias.data.zero_()

    def forward(self, q, kv, attention_mask, relative_embedding, past_key_value=None, query_offset=0):
        key_len, batch_size, _ = kv.size()
        query_len, _, _ = q.size()

        if not self.is_cross_attention or past_key_value is None or past_key_value[0].size(1) != kv.size(0):
            kv = self.pre_layer_norm(kv)
            key = self.in_proj_k(kv)  # shape: [T, B, D]
            value = self.in_proj_v(kv)  # shape: [T, B, D]
            key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)  # shape: [BxH, T, D]
            value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)  # shape: [BxH, T, D]

        if past_key_value is not None:
            if not self.is_cross_attention:
                key = torch.cat([past_key_value[0].flatten(0, 1), key], dim=1)
                value = torch.cat([past_key_value[1].flatten(0, 1), value], dim=1)
                key_len = key.size(1)
            elif past_key_value[0].size(1) == kv.size(0):
                key = past_key_value[0].flatten(0, 1)
                value = past_key_value[1].flatten(0, 1)

        if self.position_indices.size(0) < max(query_len, key_len):
            position_indices = torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(1) \
                - torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(0)
            position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
            position_indices = self.config.position_bucket_size - 1 + position_indices
            self.register_buffer("position_indices", position_indices.to(q.device), persistent=True)

        q = self.pre_layer_norm(q)
        query = self.in_proj_q(q)  # shape: [T, B, D]
        query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)

        attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
        
        query_pos = self.in_proj_q(self.dropout(relative_embedding))  # shape: [2T-1, D]
        query_pos = query_pos.view(-1, self.num_heads, self.head_size)  # shape: [2T-1, H, D]
        key_pos = self.in_proj_k(self.dropout(relative_embedding))  # shape: [2T-1, D]
        key_pos = key_pos.view(-1, self.num_heads, self.head_size)  # shape: [2T-1, H, D]

        query_ = query.view(batch_size, self.num_heads, query_len, self.head_size)
        key_ = key.view(batch_size, self.num_heads, key_len, self.head_size)
        
        attention_c_p = torch.einsum("bhqd,khd->bhqk", query_, key_pos.squeeze(1) * self.scale)
        attention_p_c = torch.einsum("bhkd,qhd->bhqk", key_ * self.scale, query_pos.squeeze(1))
        position_indices = self.position_indices[query_offset:query_offset+query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
        attention_c_p = attention_c_p.gather(3, position_indices)
        attention_p_c = attention_p_c.gather(2, position_indices)
        
        attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
        attention_scores.add_(attention_c_p)
        attention_scores.add_(attention_p_c)

        attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)

        attention_probs = self.dropout(attention_probs)
        context = torch.bmm(attention_probs.flatten(0, 1), value)  # shape: [B*H, Q, D]
        context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size)  # shape: [Q, B, H*D]
        context = self.out_proj(context)
        context = self.post_layer_norm(context)
        context = self.dropout(context)

        key = key.detach().unflatten(0, (-1, self.num_heads))
        value = value.detach().unflatten(0, (-1, self.num_heads))

        return context, attention_probs.detach(), (key, value)


class WordEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.initialize()

    def initialize(self):
        std = math.sqrt(2.0 / (5.0 * self.hidden_size))
        nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)

    def forward(self, input_ids):
        return self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))


class RelativeEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
        self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.initialize(config.hidden_size)

    def initialize(self, hidden_size):
        std = math.sqrt(2.0 / (5.0 * hidden_size))
        nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)

    def forward(self):
        return self.relative_layer_norm(self.relative_embedding)


#
# HuggingFace wrappers
#

class NorT5PreTrainedModel(PreTrainedModel):
    config_class = NorT5Config
    base_model_prefix = "norT5"
    supports_gradient_checkpointing = True

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, Encoder):
            module.activation_checkpointing = value

    def _init_weights(self, module):
        pass  # everything is already initialized


class NorT5Model(NorT5PreTrainedModel):
    def __init__(self, config, add_lm_layer=False, add_decoder=True):
        super().__init__(config)
        self.config = config

        self.cls_token_id = config.cls_token_id
        self.sep_token_id = config.sep_token_id
        self.bos_token_id = config.bos_token_id
        self.eos_token_id = config.eos_token_id
        self.pad_token_id = config.pad_token_id

        self.embedding = WordEmbedding(config)
        self.encoder = Encoder(config, activation_checkpointing=False)
        self.decoder = Decoder(config, activation_checkpointing=False) if add_decoder else None
        self.classifier = MaskClassifier(config) if add_lm_layer else None

    def get_input_embeddings(self):
        return self.embedding.word_embedding

    def set_input_embeddings(self, value):
        self.embedding.word_embedding = value

    def get_encoder(self):
        return self.get_encoder_output

    def get_decoder(self):
        return self.get_decoder_output

    def set_decoder_special_tokens(self, target_id):
        target_id.masked_fill_(target_id == self.cls_token_id, self.bos_token_id)
        target_id.masked_fill_(target_id == self.sep_token_id, self.eos_token_id)
        return target_id

    def _shift_right(self, input_ids):
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
        shifted_input_ids[..., 0] = self.bos_token_id
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id)

        return shifted_input_ids

    def get_encoder_output(
        self,
        input_ids: torch.Tensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict = False
    ):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            raise ValueError("You have to specify input_ids")

        batch_size, seq_length = input_shape
        device = input_ids.device

        if attention_mask is None:
            attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
        else:
            attention_mask = ~attention_mask.bool()
        attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        static_embeddings = self.embedding(input_ids.t())
        contextualized_embeddings, attention_probs = self.encoder(static_embeddings, attention_mask)
        contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
        last_layer = contextualized_embeddings[-1]
        contextualized_embeddings = [contextualized_embeddings[0]] + [
            contextualized_embeddings[i] - contextualized_embeddings[i - 1]
            for i in range(1, len(contextualized_embeddings))
        ]

        if not return_dict:
            return (
                last_layer,
                *([contextualized_embeddings] if output_hidden_states else []),
                *([attention_probs] if output_attentions else [])
            )
        
        return BaseModelOutput(
            last_hidden_state=last_layer,
            hidden_states=contextualized_embeddings if output_hidden_states else None,
            attentions=attention_probs if output_attentions else None
        )
    
    def get_decoder_output(
        self,
        target_ids: torch.Tensor = None,
        encoder_output: torch.Tensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict = False
    ):
        batch_size, seq_length, _ = encoder_output.shape
        device = target_ids.device

        if attention_mask is None:
            attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
        else:
            attention_mask = ~attention_mask.bool()
        attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        hidden_states, self_attention_p, cross_attention_p, key_value_states = self.decoder(
            self.embedding(target_ids.t()),
            encoder_output.transpose(0, 1),
            attention_mask,
            past_key_values
        )

        hidden_states = [e.transpose(0, 1) for e in hidden_states]
        last_layer = hidden_states[-1]
        hidden_states = [hidden_states[0]] + [
            hidden_states[i] - hidden_states[i - 1]
            for i in range(1, len(hidden_states))
        ]

        if not return_dict:
            return (
                last_layer,
                *([key_value_states] if use_cache else []),
                *([hidden_states] if output_hidden_states else []),
                *([self_attention_p] if output_attentions else []),
                *([cross_attention_p] if output_attentions else []),
            )
        
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=last_layer,
            past_key_values=key_value_states if use_cache else None,
            hidden_states=hidden_states if output_hidden_states else None,
            attentions=self_attention_p if output_attentions else None,
            cross_attentions=cross_attention_p if output_attentions else None
        )


    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None
    ):

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids)

        if encoder_outputs is None:
            encoder_outputs = self.get_encoder_output(
                input_ids, attention_mask, output_hidden_states, output_attentions, return_dict
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )
    
        decoder_outputs = self.get_decoder_output(
            decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs
        
        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class NorT5ForConditionalGeneration(NorT5Model):

    def __init__(self, config):
        super().__init__(config, add_lm_layer=True)

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", False)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.get_encoder_output(
                input_ids, attention_mask, output_hidden_states, output_attentions, return_dict
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        if labels is not None:
            labels = self.set_decoder_special_tokens(labels)

        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            decoder_input_ids = self._shift_right(labels)
        elif decoder_input_ids is not None:
            decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids)

        decoder_outputs = self.get_decoder_output(
            decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict
        )
        lm_logits = self.classifier(decoder_outputs[0])

        loss = None
        if labels is not None:
            labels.masked_fill_(labels == self.pad_token_id, -100)
            loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(lm_logits.flatten(0, 1), labels.flatten())

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]

        return {
            "decoder_input_ids": input_ids,
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self._shift_right(labels)

    def _reorder_cache(self, past_key_values, beam_idx):
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
        if past_key_values is None:
            print("You might want to consider setting `use_cache=True` to speed up decoding")
            return past_key_values

        reordered_decoder_past = ()
        for layer_past_states in past_key_values:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                layer_past_state = layer_past_state.index_select(0, beam_idx.to(layer_past_state.device))
                reordered_layer_past_states = reordered_layer_past_states + (layer_past_state,)

            assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
            assert len(reordered_layer_past_states) == len(layer_past_states)

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past


class NorT5Encoder(NorT5Model):
    def __init__(self, config):
        super().__init__(config, add_lm_layer=False, add_decoder=True)

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        return self.get_encoder_output(
            input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict
        )