File size: 4,888 Bytes
bf7ce5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
datasets:
- Local
license: bigscience-bloom-rail-1.0
language:
- id
pipeline_tag: text-generation
duplicated_from: yodi/karina
---

#  Table of Contents

1. [Model Summary](#model-summary)
2. [Use](#use)
4. [Training](#training)

# Model Summary

> We present KARINA, finetuned from BLOOMZ bigscience/bloomz-3b, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOMZ pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.

# Use

## Intended use

We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*prompt = f"Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n"*", the model will most likely answer "*Saya Karina. Ada yang bisa saya bantu?*".

## How to use

### CPU

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

MODEL_NAME = "yodi/karina"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)

inputs = tokenizer.encode("Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

</details>

### GPU in 4 bit

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers 
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline

MODEL_NAME = "yodi/karina"

model_4bit = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="cuda:1", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

prompt = f"Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n"

generator = pipeline('text-generation',
                     model=model_4bit,
                     tokenizer=tokenizer,
                     do_sample=False)

result = generator(prompt, max_length=256)
print(result)

```

</details>

### GPU in 8bit

<details>
<summary> Click to expand </summary>

```python
# pip install -q transformers 
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline

MODEL_NAME = "yodi/karina"

model_4bit = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="cuda:1", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

prompt = f"Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n"

generator = pipeline('text-generation',
                     model=model_4bit,
                     tokenizer=tokenizer,
                     do_sample=False)

result = generator(prompt, max_length=256)
print(result)
```

</details>

```
[{'generated_text': 'Given the question:\n{ siapa kamu? }\n---\nAnswer:\nSaya Karina, asisten virtual siap membantu seputar estimasi harga atau pertanyaan lain'}]
```

### Infer in Local with Gradio 

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
import re

import gradio as gr

MODEL_NAME = "yodi/karina"

model_4bit = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="cuda:1", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

prompt = f"Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n"

generator = pipeline('text-generation',
                     model=model_4bit,
                     tokenizer=tokenizer,
                     do_sample=False)

def preprocess(text):
    return f"Given the question:\n{{ {text} }}\n---\nAnswer:\n"

def generate(text):
    preprocess_result = preprocess(text)
    result = generator(preprocess_result, max_length=256)
    output = re.split(r'\Given the question:|Answer:|Answer #|Title:',result[0]['generated_text'])[2]

    return output

with gr.Blocks() as demo:
    input_text = gr.Textbox(label="Input", lines=1)
    button = gr.Button("Submit")
    output_text = gr.Textbox(lines=6, label="Output")
    button.click(generate, inputs=[input_text], outputs=output_text)

demo.launch(enable_queue=True, debug=True)
```
And open the gradio url from browser.

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16

### Framework versions

- PEFT 0.5.0.dev0

<!-- Necessary for whitespace -->
###

# Limitations

**Prompt Engineering:** The performance may vary depending on the prompt and its following BLOOMZ models.

# Training

## Model

- **Architecture:** Same as [bloom](https://huggingface.co/bigscience/bloom), also refer to the `config.json` file