loopcider commited on
Commit
405d5d6
·
verified ·
1 Parent(s): 76e2f39

Upload 3 files

Browse files
Files changed (3) hide show
  1. SnakeCLEF2024_TestMetadata.csv +0 -0
  2. model_best.pth.tar +3 -0
  3. script.py +100 -0
SnakeCLEF2024_TestMetadata.csv ADDED
The diff for this file is too large to render. See raw diff
 
model_best.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db69fa1f486a020aee617ef4eb536b3a0e1a05c57961f7d5c60773891f924f8f
3
+ size 217679664
script.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ # import onnxruntime as ort
4
+ import os
5
+ from tqdm import tqdm
6
+ import timm
7
+ import torchvision.transforms as T
8
+ from PIL import Image
9
+ import torch
10
+
11
+ def is_gpu_available():
12
+ """Check if the python package `onnxruntime-gpu` is installed."""
13
+ return torch.cuda.is_available()
14
+
15
+
16
+ class PytorchWorker:
17
+ """Run inference using ONNX runtime."""
18
+
19
+ def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1784):
20
+
21
+ def _load_model(model_name, model_path):
22
+
23
+ print("Setting up Pytorch Model")
24
+ self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
25
+ print(f"Using devide: {self.device}")
26
+
27
+ model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)
28
+
29
+ # if not torch.cuda.is_available():
30
+ # checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
31
+ # else:
32
+ # checkpoint = torch.load(model_path)
33
+
34
+ checkpoint = torch.load(model_path, map_location=self.device)
35
+ model.load_state_dict(checkpoint['state_dict'], strict=False)
36
+
37
+ return model.to(self.device).eval()
38
+
39
+ self.model = _load_model(model_name, model_path)
40
+
41
+ self.transforms = T.Compose([T.Resize((299, 299)),
42
+ T.ToTensor(),
43
+ T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
44
+
45
+
46
+ def predict_image(self, image: np.ndarray) -> list():
47
+ """Run inference using ONNX runtime.
48
+
49
+ :param image: Input image as numpy array.
50
+ :return: A list with logits and confidences.
51
+ """
52
+
53
+ logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
54
+
55
+ return logits.tolist()
56
+
57
+
58
+ def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path=r"/tmp/data/private_testset"):
59
+ """Make submission with given """
60
+
61
+ model = PytorchWorker(model_path, model_name)
62
+
63
+ predictions = []
64
+
65
+ for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
66
+ image_path = os.path.join(images_root_path, row.filename)
67
+ try:
68
+
69
+ test_image = Image.open(image_path).convert("RGB")
70
+
71
+ logits = model.predict_image(test_image)
72
+
73
+ predictions.append(np.argmax(logits))
74
+ except:
75
+ print(image_path," Not found")
76
+
77
+ test_metadata["class_id"] = predictions
78
+
79
+ user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
80
+ user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
81
+
82
+
83
+ if __name__ == "__main__":
84
+
85
+ import zipfile
86
+
87
+ with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
88
+ zip_ref.extractall("/tmp/data")
89
+
90
+ MODEL_PATH = "./model_best.pth.tar"
91
+ MODEL_NAME = "resnet50"
92
+
93
+ metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
94
+ test_metadata = pd.read_csv(metadata_file_path)
95
+
96
+ make_submission(
97
+ test_metadata=test_metadata,
98
+ model_path=MODEL_PATH,
99
+ model_name=MODEL_NAME
100
+ )