File size: 4,375 Bytes
79d4aca
 
 
 
1138a30
 
79d4aca
 
 
 
1138a30
 
79d4aca
 
 
 
 
 
 
 
 
 
1138a30
79d4aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-gpo-gen-i1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-gpo-gen-i1

This model is a fine-tuned version of [DUAL-GPO/zephyr-7b-gpo-update3-i0](https://huggingface.co/DUAL-GPO/zephyr-7b-gpo-update3-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0550
- Rewards/chosen: -0.0251
- Rewards/rejected: -0.0231
- Rewards/accuracies: 0.3875
- Rewards/margins: -0.0020
- Logps/rejected: -278.0226
- Logps/chosen: -291.8019
- Logits/rejected: -1.7909
- Logits/chosen: -1.9487

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3754        | 0.08  | 100  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.3556        | 0.16  | 200  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.3556        | 0.24  | 300  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.3606        | 0.32  | 400  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.3606        | 0.4   | 500  | 0.0586          | -0.0343        | -0.0263          | 0.3125             | -0.0079         | -281.2869      | -300.9843    | -1.7627         | -1.9202       |
| 0.3408        | 0.48  | 600  | 0.0587          | -0.0387        | -0.0304          | 0.3120             | -0.0083         | -285.3777      | -305.4413    | -1.7361         | -1.8917       |
| 0.3359        | 0.56  | 700  | 0.0587          | -0.0387        | -0.0304          | 0.3095             | -0.0083         | -285.3294      | -305.3720    | -1.7363         | -1.8920       |
| 0.3507        | 0.64  | 800  | 0.0569          | -0.0251        | -0.0199          | 0.3215             | -0.0052         | -274.8357      | -291.8357    | -1.8172         | -1.9784       |
| 0.3926        | 0.72  | 900  | 0.0550          | -0.0245        | -0.0224          | 0.3840             | -0.0021         | -277.3842      | -291.2067    | -1.7982         | -1.9565       |
| 0.3655        | 0.8   | 1000 | 0.0549          | -0.0254        | -0.0235          | 0.3860             | -0.0019         | -278.4594      | -292.0937    | -1.7905         | -1.9482       |
| 0.3682        | 0.88  | 1100 | 0.0549          | -0.0253        | -0.0234          | 0.3850             | -0.0020         | -278.3317      | -292.0442    | -1.7919         | -1.9497       |
| 0.3531        | 0.96  | 1200 | 0.0550          | -0.0251        | -0.0231          | 0.3910             | -0.0020         | -278.0787      | -291.8378    | -1.7915         | -1.9493       |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2