Phi-4-onnx-cpu-int4 Unofficial version
Note: This is unoffical version,just for test and dev.
This is a Phi-4 version of ONNX CPU, based on Olive https://github.com/microsoft/olive. Convert with the following command
1. Install the SDK
pip install olive-ai
pip install transformers==4.44.2
2. Convert CPU ONNX Support
olive auto-opt --model_name_or_path Your Phi-4 location --output_path Your onnx ouput location --device cpu --provider CPUExecutionProvider --precision int4 --use_model_builder --log_level 1
This is a conversion, but no specific optimization has been done. Please look forward to the official version.
Sample - Inference ONNX
import onnxruntime_genai as og
import numpy as np
import os
model_folder = "Your Phi-4-onnx-cpu-int4 location"
model = og.Model(model_folder)
tokenizer = og.Tokenizer(model)
tokenizer_stream = tokenizer.create_stream()
search_options = {}
search_options['max_length'] = 2048
search_options['past_present_share_buffer'] = False
chat_template = "<|user|>\n{input}</s>\n<|assistant|>"
text = """I have $20,000 in my savings account, where I receive a 4% profit per year and payments twice a year. Can you please tell me how long it will take for me to become a millionaire? Also, can you please explain the math step by step as if you were explaining it to an uneducated person?"""
prompt = f'{chat_template.format(input=text)}'
input_tokens = tokenizer.encode(prompt)
params = og.GeneratorParams(model)
params.set_search_options(**search_options)
params.input_ids = input_tokens
generator = og.Generator(model, params)
while not generator.is_done():
generator.compute_logits()
generator.generate_next_token()
new_token = generator.get_next_tokens()[0]
print(tokenizer_stream.decode(new_token), end='', flush=True)
- Downloads last month
- 3