File size: 9,719 Bytes
2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b826bdb 2219ee4 b515ec6 2219ee4 50fc8bb 2219ee4 bb6bd87 2219ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
---
datasets:
- lmms-lab/LLaVA-OneVision-Data
language:
- en
- zh
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
model-index:
- name: llava-onevision-qwen-7b-ov
results:
- task:
type: multimodal
dataset:
name: AI2D
type: ai2d
metrics:
- type: accuracy
value: 81.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ChartQA
type: chartqa
metrics:
- type: accuracy
value: 80.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: DocVQA
type: docvqa
metrics:
- type: accuracy
value: 90.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: InfoVQA
type: infovqa
metrics:
- type: accuracy
value: 70.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVerse
type: mathverse
metrics:
- type: accuracy
value: 26.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVista
type: mathvista
metrics:
- type: accuracy
value: 63.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMBench
type: mmbench
metrics:
- type: accuracy
value: 80.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MME-Perception
type: mme-perception
metrics:
- type: score
value: 1580
name: score
verified: true
- task:
type: multimodal
dataset:
name: MME-Cognition
type: mme-cognition
metrics:
- type: score
value: 418
name: score
verified: true
- task:
type: multimodal
dataset:
name: MMMU
type: mmmu
metrics:
- type: accuracy
value: 48.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMVet
type: mmvet
metrics:
- type: accuracy
value: 57.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMStar
type: mmstar
metrics:
- type: accuracy
value: 61.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Seed-Bench
type: seed-bench
metrics:
- type: accuracy
value: 75.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Science-QA
type: science-qa
metrics:
- type: accuracy
value: 96.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ImageDC
type: imagedc
metrics:
- type: accuracy
value: 88.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMLBench
type: mmlbench
metrics:
- type: accuracy
value: 77.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: RealWorldQA
type: realworldqa
metrics:
- type: accuracy
value: 66.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Vibe-Eval
type: vibe-eval
metrics:
- type: accuracy
value: 51.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LLaVA-W
type: llava-w
metrics:
- type: accuracy
value: 90.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LLaVA-Wilder
type: l-wilder
metrics:
- type: accuracy
value: 67.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ActNet-QA
type: actnet-qa
metrics:
- type: accuracy
value: 56.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 60.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 64.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 56.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NextQA
type: nextqa
metrics:
- type: accuracy
value: 79.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: PercepTest
type: percepTest
metrics:
- type: accuracy
value: 49.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: SeedBench
type: seedbench
metrics:
- type: accuracy
value: 56.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoChatGPT
type: videochatgpt
metrics:
- type: score
value: 3.49
name: score
verified: true
- task:
type: multimodal
dataset:
name: VideoDC
type: videodc
metrics:
- type: score
value: 3.75
name: score
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 58.2
name: accuracy
verified: true
---
# LLaVA-OneVision
![banner](https://i.postimg.cc/pL17YtG4/WX20240508-220230-2x.png)
Play with the model on the [LLaVA OneVision Chat](https://llava-onevision.lmms-lab.com/).
## Table of Contents
1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)
## Model Summary
The LLaVA-OneVision models are 0.5/7/72B parameter models trained on [LLaVA-OneVision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.
- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
- **Project Website:** [llava-onevision.lmms-lab.com](llava-onevision.lmms-lab.com)
- **Paper:** [LLaVA-OneVision](arxiv.org/abs/2408.03326)
- **Point of Contact:** [Bo Li](mailto:[email protected])
- **Languages:** English, Chinese
## Use
### Intended use
The model was trained on [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) and have the ability to interact with images, multi-image and videos.
**Feel free to share your generations in the Community tab!**
### Generation
We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT).
```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
warnings.filterwarnings("ignore")
pretrained = "lmms-lab/llava-onevision-qwen2-7b-ov"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
```
# Training
## Model
- **Architecture:** SO400M + Qwen2
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16
## Hardware & Software
- **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training)
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
```
@article{li2024llavaonevision,
title={LLaVA-OneVision},
}
``` |