File size: 7,567 Bytes
d593f18 ecc105e b05b2ee d593f18 0ac6052 d593f18 5a16914 d593f18 ecc105e d593f18 5a16914 d593f18 5a16914 70e353f d593f18 4fd4fba c0a6bab d593f18 d10c7bb d593f18 5a16914 70e353f d593f18 5a16914 d593f18 9ac63f9 d593f18 01a5f7c d593f18 5a09702 d593f18 35a0ba2 d593f18 56d9b58 d593f18 7633731 d2745ff 7633731 d2745ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
datasets:
- lmms-lab/LLaVA-OneVision-Data
- lmms-lab/LLaVA-Video-178K
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
pipeline_tag: video-text-to-text
model-index:
- name: LLaVA-Video-7B-Qwen2
results:
- task:
type: multimodal
dataset:
name: ActNet-QA
type: actnet-qa
metrics:
- type: accuracy
value: 56.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 57.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 70.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 58.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NextQA
type: nextqa
metrics:
- type: accuracy
value: 83.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: PercepTest
type: percepTest
metrics:
- type: accuracy
value: 67.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoChatGPT
type: videochatgpt
metrics:
- type: score
value: 3.52
name: score
verified: true
- task:
type: multimodal
dataset:
name: VideoDC
type: videodc
metrics:
- type: score
value: 3.66
name: score
verified: true
- task:
type: multimodal
dataset:
name: LongVideoBench
type: longvideobench
metrics:
- type: accuracy
value: 58.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 63.3
name: accuracy
verified: true
base_model:
- lmms-lab/llava-onevision-qwen2-7b-si
---
# LLaVA-Video-7B-Qwen2
## Table of Contents
1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)
## Model Summary
The LLaVA-Video models are 7/72B parameter models trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.
This model support at most 64 frames.
- **Project Page:** [Project Page](https://llava-vl.github.io/blog/2024-09-30-llava-video/).
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/2410.02713)
- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
- **Point of Contact:** [Yuanhan Zhang](https://zhangyuanhan-ai.github.io/)
- **Languages:** English, Chinese
## Use
### Intended use
The model was trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), having the ability to interact with images, multi-image and videos, but specific to videos.
**Feel free to share your generations in the Community tab!**
### Generation
We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT).
```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
video_path = "XXXX"
max_frames_num = "64"
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```
# Training
## Model
- **Architecture:** SO400M + Qwen2
- **Initialized Model:** lmms-lab/llava-onevision-qwen2-7b-si
- **Data:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16
## Hardware & Software
- **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training)
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
```bibtex
@misc{zhang2024videoinstructiontuningsynthetic,
title={Video Instruction Tuning With Synthetic Data},
author={Yuanhan Zhang and Jinming Wu and Wei Li and Bo Li and Zejun Ma and Ziwei Liu and Chunyuan Li},
year={2024},
eprint={2410.02713},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.02713},
}
``` |