lmma25 commited on
Commit
3e7e042
·
verified ·
1 Parent(s): 6cf270c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -102
README.md CHANGED
@@ -25,20 +25,17 @@ This is a Llama 3 model finetuned on execution logs to be used for a sock-shop a
25
  This model was finetuned on a variety of system logs of a sock shop app. Given a log chunk of 10 messages, it generates the next log message according to normal execution.
26
 
27
  - **Developed by:** Luís Almeida, Diego Pedroso, Lucas Pulcinelli, William Aisawa, Sarita Bruschi, Inês Dutra
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
  - **Language(s) (NLP):** [English]
32
  - **License:** [llama3]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
 
35
- ### Model Sources [optional]
36
 
37
  <!-- Provide the basic links for the model. -->
38
 
39
  - **Repository:** https://github.com/lasdpc-icmc/maia
40
  - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
  ## Uses
44
 
@@ -50,14 +47,6 @@ finetuned on a sample of execution logs of the new system.
50
 
51
  Direct plugin to the sock-shop app.
52
 
53
- [More Information Needed]
54
-
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
-
61
  ### Out-of-Scope Use
62
 
63
  The usage of this model on execution logs that it hasn't been finetuned on may yield bad results.
@@ -77,28 +66,18 @@ anomalies.
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
@@ -106,67 +85,21 @@ anomalies.
106
 
107
  ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
@@ -174,26 +107,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
  [More Information Needed]
 
25
  This model was finetuned on a variety of system logs of a sock shop app. Given a log chunk of 10 messages, it generates the next log message according to normal execution.
26
 
27
  - **Developed by:** Luís Almeida, Diego Pedroso, Lucas Pulcinelli, William Aisawa, Sarita Bruschi, Inês Dutra
28
+ - **Model type:** Text Generation
 
 
29
  - **Language(s) (NLP):** [English]
30
  - **License:** [llama3]
31
+ - **Finetuned from model:** Llama 3 8b
32
 
33
+ ### Model Sources
34
 
35
  <!-- Provide the basic links for the model. -->
36
 
37
  - **Repository:** https://github.com/lasdpc-icmc/maia
38
  - **Paper [optional]:** [More Information Needed]
 
39
 
40
  ## Uses
41
 
 
47
 
48
  Direct plugin to the sock-shop app.
49
 
 
 
 
 
 
 
 
 
50
  ### Out-of-Scope Use
51
 
52
  The usage of this model on execution logs that it hasn't been finetuned on may yield bad results.
 
66
 
67
  ### Training Data
68
 
69
+ https://huggingface.co/datasets/lmma25/sock-shop-logs-train
 
 
70
 
71
  ### Training Procedure
72
 
73
+ The model was finetuned using the SFTTrainer from the transformer's library in an autoregressive way.
 
 
74
 
75
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
76
 
77
 
78
  #### Training Hyperparameters
79
 
80
+ - **Training regime:** 10 epochs, AdamW optimizer, 1e-4 learning rate, bf16, weight decay 0.01, max gradient norm 0.3, cosine learning rate scheduler
 
 
 
 
 
 
81
 
82
  ## Evaluation
83
 
 
85
 
86
  ### Testing Data, Factors & Metrics
87
 
 
88
 
89
+ #### Testing Data
 
 
 
 
 
 
90
 
91
+ https://huggingface.co/datasets/lmma25/sock-shop-logs-test
92
 
93
  #### Metrics
94
 
95
+ The model was used to detect anomalies on a small sample of execution logs, achieving a precision of 0.77 and a recall of 1. Precision and recall metrics were used since
96
+ they allow for the accurate assessment of model behavior in regards to false positives and false negatives.
 
97
 
98
  ### Results
99
 
100
+ Precision 0.77
101
+ Recall 1
 
 
 
 
 
 
 
 
 
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  ## Citation [optional]
105
 
 
107
 
108
  **BibTeX:**
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  [More Information Needed]