lmazzon70 commited on
Commit
cac75d6
1 Parent(s): 0fbd112

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-ssv2-finetuned-rwf2000
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-ssv2-finetuned-rwf2000
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base-ssv2](https://huggingface.co/MCG-NJU/videomae-base-ssv2) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.2337
20
+ - Accuracy: 0.4571
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 3200
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.419 | 0.25 | 800 | 0.6122 | 0.76 |
53
+ | 1.2475 | 1.25 | 1600 | 1.4005 | 0.6038 |
54
+ | 0.0131 | 2.25 | 2400 | 1.2546 | 0.685 |
55
+ | 0.1379 | 3.25 | 3200 | 0.9228 | 0.7712 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.25.1
61
+ - Pytorch 1.13.1+cu117
62
+ - Datasets 2.8.0
63
+ - Tokenizers 0.13.2