File size: 6,007 Bytes
9ddf14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
<?xml version="1.0"?>
<net name="detokenizer" version="11">
	<layers>
		<layer id="0" name="Parameter_29" type="Parameter" version="opset1">
			<data shape="?,?" element_type="i64" />
			<output>
				<port id="0" precision="I64" names="Parameter_29">
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="1" name="Constant_2" type="Const" version="opset1">
			<data element_type="u8" shape="499767" offset="0" size="499767" />
			<output>
				<port id="0" precision="U8">
					<dim>499767</dim>
				</port>
			</output>
		</layer>
		<layer id="2" name="Convert_44" type="Convert" version="opset1">
			<data destination_type="i32" />
			<input>
				<port id="0" precision="I64">
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="I32">
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="3" name="SentencepieceDetokenizer_30" type="SentencepieceDetokenizer" version="extension">
			<input>
				<port id="0" precision="U8">
					<dim>499767</dim>
				</port>
				<port id="1" precision="I32">
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="3" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="4" precision="U8">
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="4" name="Constant_32" type="Const" version="opset1">
			<data element_type="u8" shape="10" offset="499767" size="10" />
			<output>
				<port id="0" precision="U8">
					<dim>10</dim>
				</port>
			</output>
		</layer>
		<layer id="5" name="Constant_34" type="Const" version="opset1">
			<data element_type="u8" shape="2" offset="499777" size="2" />
			<output>
				<port id="0" precision="U8">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="6" name="RegexNormalization_35" type="RegexNormalization" version="extension">
			<data global_replace="true" />
			<input>
				<port id="0" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="1" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="2" precision="U8">
					<dim>-1</dim>
				</port>
				<port id="3" precision="U8">
					<dim>10</dim>
				</port>
				<port id="4" precision="U8">
					<dim>2</dim>
				</port>
			</input>
			<output>
				<port id="5" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="6" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="7" precision="U8">
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="7" name="StringTensorPack_36" type="StringTensorPack" version="extension">
			<data mode="begins_ends" />
			<input>
				<port id="0" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="1" precision="I32">
					<dim>-1</dim>
				</port>
				<port id="2" precision="U8">
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="STRING" names="string_output">
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="8" name="Result_37" type="Result" version="opset1">
			<input>
				<port id="0" precision="STRING">
					<dim>-1</dim>
				</port>
			</input>
		</layer>
	</layers>
	<edges>
		<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
		<edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
		<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
		<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
		<edge from-layer="3" from-port="3" to-layer="6" to-port="1" />
		<edge from-layer="3" from-port="4" to-layer="6" to-port="2" />
		<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
		<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
		<edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
		<edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
		<edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
		<edge from-layer="7" from-port="3" to-layer="8" to-port="0" />
	</edges>
	<rt_info>
		<bos_token_id value="1" />
		<chat_template value="{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true and not '&lt;&lt;SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don\'t know the answer to a question, please don\'t share false information.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '&lt;&lt;SYS>>\n' + system_message + '\n&lt;&lt;/SYS>>\n\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '&lt;&lt;SYS>>\n' + content.strip() + '\n&lt;&lt;/SYS>>\n\n' }}{% elif message['role'] == 'assistant' %}{{ ' '  + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}" />
		<eos_token_id value="32000" />
		<original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
		<pad_token_id value="2" />
	</rt_info>
</net>