doberst commited on
Commit
a746a5a
1 Parent(s): 9321677

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -17
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
4
- tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
- # slim-extract-tiny-ov
8
 
9
- **slim-extract-tiny-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
10
 
11
- This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
 
14
  ### Model Description
@@ -16,24 +16,13 @@ This is an OpenVino int4 quantized version of slim-extract-tiny, providing a ver
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
- - **Model Parent:** llmware/slim-extract-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
- - **Uses:** Extraction of values from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
 
26
- ### Example Usage
27
-
28
- from llmware.models import ModelCatalog
29
-
30
- text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
31
- model = ModelCatalog().load_model("slim-extract-tiny-ov")
32
- llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
33
-
34
- Output: `llm_response = {"revenue": [$125 million"]}`
35
-
36
-
37
  ## Model Card Contact
38
 
39
  [llmware on github](https://www.github.com/llmware-ai/llmware)
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, p1, llmware-fx, ov]
5
  ---
6
 
7
+ # slim-qa-gen-tiny-ov
8
 
9
+ **slim-qa-gen-tiny-ov** is a specialized function calling model that generates a question and answer pair from a context passage.
10
 
11
+ This is an OpenVino int4 quantized version of slim-qa-gen-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
 
14
  ### Model Description
 
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
+ - **Model Parent:** llmware/slim-qa-gen-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
+ - **Uses:** Automated generation of question-answer pairs from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
 
 
 
 
 
 
 
 
 
 
 
 
26
  ## Model Card Contact
27
 
28
  [llmware on github](https://www.github.com/llmware-ai/llmware)