doberst commited on
Commit
211e972
1 Parent(s): 721ba56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -16
README.md CHANGED
@@ -4,9 +4,9 @@ inference: false
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
- # slim-extract-tiny-ov
8
 
9
- **slim-extract-tiny-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
10
 
11
  This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
@@ -14,26 +14,15 @@ This is an OpenVino int4 quantized version of slim-extract-tiny, providing a ver
14
  ### Model Description
15
 
16
  - **Developed by:** llmware
17
- - **Model type:** tinyllama
18
- - **Parameters:** 1.1 billion
19
- - **Model Parent:** llmware/slim-extract-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Extraction of values from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
 
26
- ### Example Usage
27
-
28
- from llmware.models import ModelCatalog
29
-
30
- text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
31
- model = ModelCatalog().load_model("slim-extract-tiny-ov")
32
- llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
33
-
34
- Output: `llm_response = {"revenue": [$125 million"]}`
35
-
36
-
37
  ## Model Card Contact
38
 
39
  [llmware on github](https://www.github.com/llmware-ai/llmware)
 
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
+ # slim-extract-qwen-1.5b-ov
8
 
9
+ **slim-extract-qwen-1.5b-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
10
 
11
  This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
 
14
  ### Model Description
15
 
16
  - **Developed by:** llmware
17
+ - **Model type:** qwen2
18
+ - **Parameters:** 1.5 billion
19
+ - **Model Parent:** llmware/slim-extract-qwen-1.5b
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Extraction of values from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
 
 
 
 
 
 
 
 
 
 
 
 
26
  ## Model Card Contact
27
 
28
  [llmware on github](https://www.github.com/llmware-ai/llmware)