Update README.md
Browse files
README.md
CHANGED
@@ -4,9 +4,9 @@ inference: false
|
|
4 |
tags: [green, p1, llmware-fx, ov, emerald]
|
5 |
---
|
6 |
|
7 |
-
# slim-extract-
|
8 |
|
9 |
-
**slim-extract-
|
10 |
|
11 |
This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
|
12 |
|
@@ -14,26 +14,15 @@ This is an OpenVino int4 quantized version of slim-extract-tiny, providing a ver
|
|
14 |
### Model Description
|
15 |
|
16 |
- **Developed by:** llmware
|
17 |
-
- **Model type:**
|
18 |
-
- **Parameters:** 1.
|
19 |
-
- **Model Parent:** llmware/slim-extract-
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
- **Uses:** Extraction of values from complex business documents
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
26 |
-
### Example Usage
|
27 |
-
|
28 |
-
from llmware.models import ModelCatalog
|
29 |
-
|
30 |
-
text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
|
31 |
-
model = ModelCatalog().load_model("slim-extract-tiny-ov")
|
32 |
-
llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
|
33 |
-
|
34 |
-
Output: `llm_response = {"revenue": [$125 million"]}`
|
35 |
-
|
36 |
-
|
37 |
## Model Card Contact
|
38 |
|
39 |
[llmware on github](https://www.github.com/llmware-ai/llmware)
|
|
|
4 |
tags: [green, p1, llmware-fx, ov, emerald]
|
5 |
---
|
6 |
|
7 |
+
# slim-extract-qwen-1.5b-ov
|
8 |
|
9 |
+
**slim-extract-qwen-1.5b-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
|
10 |
|
11 |
This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
|
12 |
|
|
|
14 |
### Model Description
|
15 |
|
16 |
- **Developed by:** llmware
|
17 |
+
- **Model type:** qwen2
|
18 |
+
- **Parameters:** 1.5 billion
|
19 |
+
- **Model Parent:** llmware/slim-extract-qwen-1.5b
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
- **Uses:** Extraction of values from complex business documents
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
## Model Card Contact
|
27 |
|
28 |
[llmware on github](https://www.github.com/llmware-ai/llmware)
|