File size: 1,746 Bytes
a71017b
 
 
d9f78d6
6708b35
d9f78d6
 
 
 
84f8a40
d9f78d6
ddc2cc2
d9f78d6
d138a97
d9f78d6
d138a97
84f8a40
d9f78d6
 
d138a97
d9f78d6
d138a97
 
 
84f8a40
d138a97
d9f78d6
d138a97
84f8a40
d9f78d6
 
d138a97
d9f78d6
d138a97
d9f78d6
d138a97
84f8a40
 
d9f78d6
 
84f8a40
d9f78d6
 
 
 
d138a97
d9f78d6
d138a97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
---

# SLIM-EMOTIONS-TOOL

<!-- Provide a quick summary of what the model is/does. -->


**slim-emotions-tool** is a 4_K_M quantized GGUF version of slim-emotions, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.  

[**slim-emotions**](https://huggingface.co/llmware/slim-emotions) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.

To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-emotions-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-emotions-tool")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-emotions-tool", verbose=True)  


Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:

    from llmware.agents import LLMfx

    llm_fx = LLMfx()
    llm_fx.load_tool("emotions")
    response = llm_fx.emotions(text)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-emotions-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)