dragon-deci-6b-v0 / example-contract-analysis-use-case.py
doberst's picture
Upload example-contract-analysis-use-case.py
8202002
raw
history blame
2.13 kB
import os
import re
import time
from llmware.prompts import Prompt, HumanInTheLoop
from llmware.configs import LLMWareConfig
def contract_analysis_simple (model_name):
# my contracts folder path - note: this assumes prior preparation step
contracts_path = "/home/ubuntu/contracts/"
# query list - "key" : "value"
query_list = {"executive employment agreement": "What are the name of the two parties?",
"base salary": "What is the executive's base salary?",
"governing law": "What is the governing law?"}
print("\nupdate: loading model - ", model_name)
prompter = Prompt().load_model(model_name)
# start the clock to measure processing time, once model loaded
t0 = time.time()
for i, contract in enumerate(os.listdir(contracts_path)):
print("\nAnalyzing contract: ", str(i+1), contract)
for key, value in query_list.items():
# contract is parsed, text-chunked, and then filtered by topic key
source = prompter.add_source_document(contracts_path, contract, query=key)
# calling the LLM with 'source' information from the contract automatically packaged into the prompt
responses = prompter.prompt_with_source(value, prompt_name="just_the_facts", temperature=0.3)
for r, response in enumerate(responses):
print("LLM Response - ", key, " - ", re.sub("[\n]"," ", response["llm_response"]))
# We're done with this contract, clear the source from the prompt
prompter.clear_source_materials()
# capture time of the processing
print("\nupdate: time cycle: ", time.time() - t0)
# Save jsonl report to jsonl to /prompt_history folder
print("\nupdate: prompt state saved at: ", os.path.join(LLMWareConfig.get_prompt_path(),prompter.prompt_id))
prompter.save_state()
csv_output = HumanInTheLoop(prompter).export_current_interaction_to_csv()
print("update: csv output - ", csv_output)
return 0
if __name__ == "__main__":
model = "llmware/dragon-deci-6b-v0"
contract_analysis_simple(model)