patrickvonplaten
commited on
Commit
·
ac83cb5
1
Parent(s):
714a42b
Update README.md
Browse files
README.md
CHANGED
@@ -76,7 +76,165 @@ Experimentally, the checkpoint can be used with other diffusion models such as d
|
|
76 |
$ pip install diffusers transformers accelerate
|
77 |
```
|
78 |
|
79 |
-
2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
```py
|
82 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
@@ -101,8 +259,6 @@ seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[
|
|
101 |
|
102 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
103 |
|
104 |
-
palette = np.array(ade_palette())
|
105 |
-
|
106 |
for label, color in enumerate(palette):
|
107 |
color_seg[seg == label, :] = color
|
108 |
|
|
|
76 |
$ pip install diffusers transformers accelerate
|
77 |
```
|
78 |
|
79 |
+
2. We'll need to make use of a color palette here as described in [semantic_segmentation](https://huggingface.co/docs/transformers/tasks/semantic_segmentation):
|
80 |
+
|
81 |
+
```py
|
82 |
+
palette = np.asarray([
|
83 |
+
[0, 0, 0],
|
84 |
+
[120, 120, 120],
|
85 |
+
[180, 120, 120],
|
86 |
+
[6, 230, 230],
|
87 |
+
[80, 50, 50],
|
88 |
+
[4, 200, 3],
|
89 |
+
[120, 120, 80],
|
90 |
+
[140, 140, 140],
|
91 |
+
[204, 5, 255],
|
92 |
+
[230, 230, 230],
|
93 |
+
[4, 250, 7],
|
94 |
+
[224, 5, 255],
|
95 |
+
[235, 255, 7],
|
96 |
+
[150, 5, 61],
|
97 |
+
[120, 120, 70],
|
98 |
+
[8, 255, 51],
|
99 |
+
[255, 6, 82],
|
100 |
+
[143, 255, 140],
|
101 |
+
[204, 255, 4],
|
102 |
+
[255, 51, 7],
|
103 |
+
[204, 70, 3],
|
104 |
+
[0, 102, 200],
|
105 |
+
[61, 230, 250],
|
106 |
+
[255, 6, 51],
|
107 |
+
[11, 102, 255],
|
108 |
+
[255, 7, 71],
|
109 |
+
[255, 9, 224],
|
110 |
+
[9, 7, 230],
|
111 |
+
[220, 220, 220],
|
112 |
+
[255, 9, 92],
|
113 |
+
[112, 9, 255],
|
114 |
+
[8, 255, 214],
|
115 |
+
[7, 255, 224],
|
116 |
+
[255, 184, 6],
|
117 |
+
[10, 255, 71],
|
118 |
+
[255, 41, 10],
|
119 |
+
[7, 255, 255],
|
120 |
+
[224, 255, 8],
|
121 |
+
[102, 8, 255],
|
122 |
+
[255, 61, 6],
|
123 |
+
[255, 194, 7],
|
124 |
+
[255, 122, 8],
|
125 |
+
[0, 255, 20],
|
126 |
+
[255, 8, 41],
|
127 |
+
[255, 5, 153],
|
128 |
+
[6, 51, 255],
|
129 |
+
[235, 12, 255],
|
130 |
+
[160, 150, 20],
|
131 |
+
[0, 163, 255],
|
132 |
+
[140, 140, 140],
|
133 |
+
[250, 10, 15],
|
134 |
+
[20, 255, 0],
|
135 |
+
[31, 255, 0],
|
136 |
+
[255, 31, 0],
|
137 |
+
[255, 224, 0],
|
138 |
+
[153, 255, 0],
|
139 |
+
[0, 0, 255],
|
140 |
+
[255, 71, 0],
|
141 |
+
[0, 235, 255],
|
142 |
+
[0, 173, 255],
|
143 |
+
[31, 0, 255],
|
144 |
+
[11, 200, 200],
|
145 |
+
[255, 82, 0],
|
146 |
+
[0, 255, 245],
|
147 |
+
[0, 61, 255],
|
148 |
+
[0, 255, 112],
|
149 |
+
[0, 255, 133],
|
150 |
+
[255, 0, 0],
|
151 |
+
[255, 163, 0],
|
152 |
+
[255, 102, 0],
|
153 |
+
[194, 255, 0],
|
154 |
+
[0, 143, 255],
|
155 |
+
[51, 255, 0],
|
156 |
+
[0, 82, 255],
|
157 |
+
[0, 255, 41],
|
158 |
+
[0, 255, 173],
|
159 |
+
[10, 0, 255],
|
160 |
+
[173, 255, 0],
|
161 |
+
[0, 255, 153],
|
162 |
+
[255, 92, 0],
|
163 |
+
[255, 0, 255],
|
164 |
+
[255, 0, 245],
|
165 |
+
[255, 0, 102],
|
166 |
+
[255, 173, 0],
|
167 |
+
[255, 0, 20],
|
168 |
+
[255, 184, 184],
|
169 |
+
[0, 31, 255],
|
170 |
+
[0, 255, 61],
|
171 |
+
[0, 71, 255],
|
172 |
+
[255, 0, 204],
|
173 |
+
[0, 255, 194],
|
174 |
+
[0, 255, 82],
|
175 |
+
[0, 10, 255],
|
176 |
+
[0, 112, 255],
|
177 |
+
[51, 0, 255],
|
178 |
+
[0, 194, 255],
|
179 |
+
[0, 122, 255],
|
180 |
+
[0, 255, 163],
|
181 |
+
[255, 153, 0],
|
182 |
+
[0, 255, 10],
|
183 |
+
[255, 112, 0],
|
184 |
+
[143, 255, 0],
|
185 |
+
[82, 0, 255],
|
186 |
+
[163, 255, 0],
|
187 |
+
[255, 235, 0],
|
188 |
+
[8, 184, 170],
|
189 |
+
[133, 0, 255],
|
190 |
+
[0, 255, 92],
|
191 |
+
[184, 0, 255],
|
192 |
+
[255, 0, 31],
|
193 |
+
[0, 184, 255],
|
194 |
+
[0, 214, 255],
|
195 |
+
[255, 0, 112],
|
196 |
+
[92, 255, 0],
|
197 |
+
[0, 224, 255],
|
198 |
+
[112, 224, 255],
|
199 |
+
[70, 184, 160],
|
200 |
+
[163, 0, 255],
|
201 |
+
[153, 0, 255],
|
202 |
+
[71, 255, 0],
|
203 |
+
[255, 0, 163],
|
204 |
+
[255, 204, 0],
|
205 |
+
[255, 0, 143],
|
206 |
+
[0, 255, 235],
|
207 |
+
[133, 255, 0],
|
208 |
+
[255, 0, 235],
|
209 |
+
[245, 0, 255],
|
210 |
+
[255, 0, 122],
|
211 |
+
[255, 245, 0],
|
212 |
+
[10, 190, 212],
|
213 |
+
[214, 255, 0],
|
214 |
+
[0, 204, 255],
|
215 |
+
[20, 0, 255],
|
216 |
+
[255, 255, 0],
|
217 |
+
[0, 153, 255],
|
218 |
+
[0, 41, 255],
|
219 |
+
[0, 255, 204],
|
220 |
+
[41, 0, 255],
|
221 |
+
[41, 255, 0],
|
222 |
+
[173, 0, 255],
|
223 |
+
[0, 245, 255],
|
224 |
+
[71, 0, 255],
|
225 |
+
[122, 0, 255],
|
226 |
+
[0, 255, 184],
|
227 |
+
[0, 92, 255],
|
228 |
+
[184, 255, 0],
|
229 |
+
[0, 133, 255],
|
230 |
+
[255, 214, 0],
|
231 |
+
[25, 194, 194],
|
232 |
+
[102, 255, 0],
|
233 |
+
[92, 0, 255],
|
234 |
+
])
|
235 |
+
```
|
236 |
+
|
237 |
+
3. Having defined the color palette we can now run the whole segmentation + controlnet generation code:
|
238 |
|
239 |
```py
|
240 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
|
|
259 |
|
260 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
261 |
|
|
|
|
|
262 |
for label, color in enumerate(palette):
|
263 |
color_seg[seg == label, :] = color
|
264 |
|