dev: uploaded model files
Browse files- cat_dog_classifier.bin +3 -0
- config.json +8 -0
- model.py +13 -0
- quickdraw_data/cat.npy +3 -0
- quickdraw_data/dog.npy +3 -0
- requirements.txt +6 -0
- sample_predictions.png +0 -0
- train_cat_dog_classifier.py +310 -0
cat_dog_classifier.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6be6dd4dbb80eb2824563dd9237b63a582a57482130e0494642e4e06ece39728
|
3 |
+
size 1685764
|
config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"batch_size": 64,
|
3 |
+
"num_epochs": 5,
|
4 |
+
"learning_rate": 0.001,
|
5 |
+
"model_save_path": "cat_dog_classifier.bin",
|
6 |
+
"data_path": "quickdraw_data",
|
7 |
+
"num_samples": 5000
|
8 |
+
}
|
model.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class SimpleModel(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super(SimpleModel, self).__init__()
|
7 |
+
self.fc1 = nn.Linear(784, 128)
|
8 |
+
self.fc2 = nn.Linear(128, 2)
|
9 |
+
|
10 |
+
def forward(self, x):
|
11 |
+
x = torch.relu(self.fc1(x))
|
12 |
+
x = self.fc2(x)
|
13 |
+
return x
|
quickdraw_data/cat.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21a281839d3f2eef601d57d2338a4eafdf24649f8d0a0e42d3ec3e595911463e
|
3 |
+
size 96590448
|
quickdraw_data/dog.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72f95508d440976a075e7098557647bbdeaea7a06c63889215c5b87fbf82ea2c
|
3 |
+
size 119292736
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.0
|
2 |
+
numpy==1.24.3
|
3 |
+
requests==2.31.0
|
4 |
+
Pillow==9.4.0
|
5 |
+
matplotlib==3.8.0
|
6 |
+
scikit-learn==1.3.0
|
sample_predictions.png
ADDED
train_cat_dog_classifier.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import TensorDataset, DataLoader, random_split
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.optim as optim
|
9 |
+
from PIL import Image
|
10 |
+
import requests
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
# Ensure that matplotlib does not try to open a window (useful if running on a server)
|
14 |
+
import matplotlib
|
15 |
+
matplotlib.use('Agg')
|
16 |
+
|
17 |
+
# Check if CUDA is available
|
18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
print(f'Using device: {device}')
|
20 |
+
|
21 |
+
def load_config(config_file='config.json'):
|
22 |
+
"""
|
23 |
+
Loads configuration parameters from a JSON file.
|
24 |
+
Args:
|
25 |
+
config_file (str): Path to the JSON config file.
|
26 |
+
Returns:
|
27 |
+
config (dict): Dictionary containing configuration parameters.
|
28 |
+
"""
|
29 |
+
with open(config_file, 'r') as f:
|
30 |
+
return json.load(f)
|
31 |
+
|
32 |
+
def download_quickdraw_data():
|
33 |
+
"""
|
34 |
+
Downloads 'cat.npy' and 'dog.npy' files from the Quick, Draw! dataset.
|
35 |
+
"""
|
36 |
+
os.makedirs('quickdraw_data', exist_ok=True)
|
37 |
+
base_url = 'https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/'
|
38 |
+
|
39 |
+
categories = ['cat', 'dog']
|
40 |
+
for category in categories:
|
41 |
+
url = f"{base_url}{category}.npy"
|
42 |
+
save_path = os.path.join('quickdraw_data', f"{category}.npy")
|
43 |
+
|
44 |
+
if os.path.exists(save_path):
|
45 |
+
print(f"{category}.npy already exists, skipping download.")
|
46 |
+
continue
|
47 |
+
|
48 |
+
print(f"Downloading {category}.npy...")
|
49 |
+
response = requests.get(url, stream=True)
|
50 |
+
if response.status_code == 200:
|
51 |
+
with open(save_path, 'wb') as f:
|
52 |
+
for chunk in response.iter_content(chunk_size=8192):
|
53 |
+
f.write(chunk)
|
54 |
+
print(f"Downloaded {category}.npy")
|
55 |
+
else:
|
56 |
+
print(f"Failed to download {category}.npy. Status code: {response.status_code}")
|
57 |
+
|
58 |
+
def load_and_preprocess_data(num_samples=5000):
|
59 |
+
"""
|
60 |
+
Loads and preprocesses the data for 'cat' and 'dog' categories.
|
61 |
+
Args:
|
62 |
+
num_samples (int): Number of samples to load for each category.
|
63 |
+
Returns:
|
64 |
+
train_loader, test_loader: DataLoaders for training and testing.
|
65 |
+
"""
|
66 |
+
# Load data
|
67 |
+
cat_data = np.load('quickdraw_data/cat.npy')
|
68 |
+
dog_data = np.load('quickdraw_data/dog.npy')
|
69 |
+
|
70 |
+
# Limit the number of samples
|
71 |
+
cat_data = cat_data[:num_samples]
|
72 |
+
dog_data = dog_data[:num_samples]
|
73 |
+
|
74 |
+
# Create labels: 0 for cat, 1 for dog
|
75 |
+
cat_labels = np.zeros(len(cat_data), dtype=np.int64)
|
76 |
+
dog_labels = np.ones(len(dog_data), dtype=np.int64)
|
77 |
+
|
78 |
+
# Combine data and labels
|
79 |
+
data = np.concatenate((cat_data, dog_data), axis=0)
|
80 |
+
labels = np.concatenate((cat_labels, dog_labels), axis=0)
|
81 |
+
|
82 |
+
# Normalize data
|
83 |
+
data = data.astype('float32') / 255.0
|
84 |
+
|
85 |
+
# Reshape data for PyTorch: (batch_size, channels, height, width)
|
86 |
+
data = data.reshape(-1, 1, 28, 28)
|
87 |
+
|
88 |
+
# Convert to PyTorch tensors
|
89 |
+
data_tensor = torch.tensor(data)
|
90 |
+
labels_tensor = torch.tensor(labels)
|
91 |
+
|
92 |
+
# Create a TensorDataset
|
93 |
+
dataset = TensorDataset(data_tensor, labels_tensor)
|
94 |
+
|
95 |
+
# Split dataset into training and testing sets (80% train, 20% test)
|
96 |
+
train_size = int(0.8 * len(dataset))
|
97 |
+
test_size = len(dataset) - train_size
|
98 |
+
|
99 |
+
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
|
100 |
+
|
101 |
+
# Create DataLoaders
|
102 |
+
config = load_config()
|
103 |
+
batch_size = config['batch_size']
|
104 |
+
|
105 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
106 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
107 |
+
|
108 |
+
return train_loader, test_loader
|
109 |
+
|
110 |
+
class SimpleCNN(nn.Module):
|
111 |
+
"""
|
112 |
+
Defines a simple Convolutional Neural Network for binary classification.
|
113 |
+
"""
|
114 |
+
def __init__(self):
|
115 |
+
super(SimpleCNN, self).__init__()
|
116 |
+
# Convolutional layers
|
117 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
|
118 |
+
self.pool = nn.MaxPool2d(2, 2)
|
119 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
120 |
+
# Fully connected layers
|
121 |
+
self.fc1 = nn.Linear(64 * 7 * 7, 128)
|
122 |
+
self.fc2 = nn.Linear(128, 2) # 2 output classes: cat and dog
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
x = F.relu(self.conv1(x)) # Convolutional layer 1
|
126 |
+
x = self.pool(x) # Max pooling
|
127 |
+
x = F.relu(self.conv2(x)) # Convolutional layer 2
|
128 |
+
x = self.pool(x) # Max pooling
|
129 |
+
x = x.view(-1, 64 * 7 * 7) # Flatten
|
130 |
+
x = F.relu(self.fc1(x)) # Fully connected layer 1
|
131 |
+
x = self.fc2(x) # Output layer
|
132 |
+
return x
|
133 |
+
|
134 |
+
def train_model(model, train_loader, num_epochs=5, learning_rate=0.001):
|
135 |
+
"""
|
136 |
+
Trains the model using the training DataLoader.
|
137 |
+
Args:
|
138 |
+
model: The neural network model to train.
|
139 |
+
train_loader: DataLoader for the training data.
|
140 |
+
num_epochs (int): Number of epochs to train.
|
141 |
+
learning_rate (float): Learning rate for the optimizer.
|
142 |
+
"""
|
143 |
+
criterion = nn.CrossEntropyLoss()
|
144 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
145 |
+
|
146 |
+
model.train()
|
147 |
+
for epoch in range(num_epochs):
|
148 |
+
running_loss = 0.0
|
149 |
+
|
150 |
+
for images, labels in train_loader:
|
151 |
+
images = images.to(device)
|
152 |
+
labels = labels.to(device)
|
153 |
+
|
154 |
+
# Zero the parameter gradients
|
155 |
+
optimizer.zero_grad()
|
156 |
+
|
157 |
+
# Forward pass
|
158 |
+
outputs = model(images)
|
159 |
+
loss = criterion(outputs, labels)
|
160 |
+
|
161 |
+
# Backward pass and optimize
|
162 |
+
loss.backward()
|
163 |
+
optimizer.step()
|
164 |
+
|
165 |
+
running_loss += loss.item() * images.size(0)
|
166 |
+
|
167 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
168 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')
|
169 |
+
|
170 |
+
def evaluate_model(model, test_loader):
|
171 |
+
"""
|
172 |
+
Evaluates the model on the test DataLoader.
|
173 |
+
Args:
|
174 |
+
model: The trained neural network model.
|
175 |
+
test_loader: DataLoader for the test data.
|
176 |
+
"""
|
177 |
+
model.eval()
|
178 |
+
correct = 0
|
179 |
+
total = 0
|
180 |
+
|
181 |
+
with torch.no_grad():
|
182 |
+
for images, labels in test_loader:
|
183 |
+
images = images.to(device)
|
184 |
+
labels = labels.to(device)
|
185 |
+
|
186 |
+
outputs = model(images)
|
187 |
+
_, predicted = torch.max(outputs.data, 1)
|
188 |
+
|
189 |
+
total += labels.size(0)
|
190 |
+
correct += (predicted == labels).sum().item()
|
191 |
+
|
192 |
+
accuracy = 100 * correct / total
|
193 |
+
print(f'Test Accuracy: {accuracy:.2f}%')
|
194 |
+
|
195 |
+
def save_model(model, filepath='cat_dog_classifier.pth'):
|
196 |
+
"""
|
197 |
+
Saves the trained model to a file.
|
198 |
+
Args:
|
199 |
+
model: The trained neural network model.
|
200 |
+
filepath (str): The path where the model will be saved.
|
201 |
+
"""
|
202 |
+
torch.save(model.state_dict(), filepath)
|
203 |
+
print(f'Model saved to {filepath}')
|
204 |
+
|
205 |
+
def load_model(model, filepath='cat_dog_classifier.pth'):
|
206 |
+
"""
|
207 |
+
Loads the model parameters from a file.
|
208 |
+
Args:
|
209 |
+
model: The neural network model to load parameters into.
|
210 |
+
filepath (str): The path to the saved model file.
|
211 |
+
"""
|
212 |
+
model.load_state_dict(torch.load(filepath, map_location=device))
|
213 |
+
model.to(device)
|
214 |
+
print(f'Model loaded from {filepath}')
|
215 |
+
|
216 |
+
def predict_image(model, image):
|
217 |
+
"""
|
218 |
+
Predicts the class of a single image.
|
219 |
+
Args:
|
220 |
+
model: The trained neural network model.
|
221 |
+
image: A PIL Image or NumPy array.
|
222 |
+
Returns:
|
223 |
+
prediction (str): The predicted class label ('cat' or 'dog').
|
224 |
+
"""
|
225 |
+
# Preprocess the image
|
226 |
+
if isinstance(image, Image.Image):
|
227 |
+
image = image.resize((28, 28)).convert('L')
|
228 |
+
image = np.array(image).astype('float32') / 255.0
|
229 |
+
elif isinstance(image, np.ndarray):
|
230 |
+
if image.shape != (28, 28):
|
231 |
+
image = Image.fromarray(image).resize((28, 28)).convert('L')
|
232 |
+
image = np.array(image).astype('float32') / 255.0
|
233 |
+
else:
|
234 |
+
raise ValueError("Image must be a PIL Image or NumPy array.")
|
235 |
+
|
236 |
+
image = image.reshape(1, 1, 28, 28)
|
237 |
+
image_tensor = torch.tensor(image).to(device)
|
238 |
+
|
239 |
+
# Get prediction
|
240 |
+
model.eval()
|
241 |
+
with torch.no_grad():
|
242 |
+
output = model(image_tensor)
|
243 |
+
_, predicted = torch.max(output.data, 1)
|
244 |
+
return 'cat' if predicted.item() == 0 else 'dog'
|
245 |
+
|
246 |
+
def visualize_predictions(model, test_loader, num_images=8):
|
247 |
+
"""
|
248 |
+
Visualizes sample predictions from the test set.
|
249 |
+
Args:
|
250 |
+
model: The trained neural network model.
|
251 |
+
test_loader: DataLoader for the test data.
|
252 |
+
num_images (int): Number of images to display.
|
253 |
+
"""
|
254 |
+
model.eval()
|
255 |
+
dataiter = iter(test_loader)
|
256 |
+
images, labels = next(dataiter) # Use the built-in next() function
|
257 |
+
|
258 |
+
images = images.to(device)
|
259 |
+
labels = labels.to(device)
|
260 |
+
|
261 |
+
# Get predictions
|
262 |
+
outputs = model(images)
|
263 |
+
_, predicted = torch.max(outputs, 1)
|
264 |
+
|
265 |
+
# Move images to CPU for plotting
|
266 |
+
images = images.cpu().numpy()
|
267 |
+
predicted = predicted.cpu().numpy()
|
268 |
+
labels = labels.cpu().numpy()
|
269 |
+
|
270 |
+
# Plot the images with predicted and true labels
|
271 |
+
fig = plt.figure(figsize=(10, 4))
|
272 |
+
for idx in range(num_images):
|
273 |
+
ax = fig.add_subplot(2, num_images // 2, idx+1)
|
274 |
+
img = images[idx][0]
|
275 |
+
ax.imshow(img, cmap='gray')
|
276 |
+
pred_label = 'cat' if predicted[idx] == 0 else 'dog'
|
277 |
+
true_label = 'cat' if labels[idx] == 0 else 'dog'
|
278 |
+
ax.set_title(f'Pred: {pred_label}\nTrue: {true_label}')
|
279 |
+
ax.axis('off')
|
280 |
+
plt.tight_layout()
|
281 |
+
plt.savefig('sample_predictions.png')
|
282 |
+
print('Sample predictions saved to sample_predictions.png')
|
283 |
+
|
284 |
+
def main():
|
285 |
+
# Load configuration
|
286 |
+
config = load_config()
|
287 |
+
|
288 |
+
# Step 1: Download the data
|
289 |
+
download_quickdraw_data()
|
290 |
+
|
291 |
+
# Step 2: Load and preprocess the data
|
292 |
+
train_loader, test_loader = load_and_preprocess_data(num_samples=config['num_samples'])
|
293 |
+
|
294 |
+
# Step 3: Initialize the model
|
295 |
+
model = SimpleCNN().to(device)
|
296 |
+
|
297 |
+
# Step 4: Train the model
|
298 |
+
train_model(model, train_loader, num_epochs=config['num_epochs'], learning_rate=config['learning_rate'])
|
299 |
+
|
300 |
+
# Step 5: Evaluate the model
|
301 |
+
evaluate_model(model, test_loader)
|
302 |
+
|
303 |
+
# Step 6: Visualize sample predictions
|
304 |
+
visualize_predictions(model, test_loader, num_images=8)
|
305 |
+
|
306 |
+
# Step 7: Save the model
|
307 |
+
save_model(model, config['model_save_path'])
|
308 |
+
|
309 |
+
if __name__ == '__main__':
|
310 |
+
main()
|