lixiqi commited on
Commit
c515b87
·
1 Parent(s): ae14095

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
- value: 0.6415436054611312
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
31
  It achieves the following results on the evaluation set:
32
- - Loss: 0.9518
33
- - Accuracy: 0.6415
34
 
35
  ## Model description
36
 
@@ -58,13 +58,15 @@ The following hyperparameters were used during training:
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_ratio: 0.1
61
- - num_epochs: 1
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
- | 1.1175 | 1.0 | 224 | 0.9518 | 0.6415 |
 
 
68
 
69
 
70
  ### Framework versions
 
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
+ value: 0.6840345500139314
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 0.8481
33
+ - Accuracy: 0.6840
34
 
35
  ## Model description
36
 
 
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 3
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.1839 | 1.0 | 224 | 1.0266 | 0.6120 |
68
+ | 1.0333 | 2.0 | 448 | 0.9063 | 0.6608 |
69
+ | 0.9655 | 3.0 | 672 | 0.8481 | 0.6840 |
70
 
71
 
72
  ### Framework versions