output

This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3471
  • Accuracy: 0.8672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 306 0.3968 0.8594
0.4221 2.0 612 0.3889 0.8594
0.4221 3.0 918 0.3814 0.8594
0.4026 4.0 1224 0.3775 0.8594
0.396 5.0 1530 0.3724 0.8594
0.396 6.0 1836 0.3707 0.8594
0.392 7.0 2142 0.3721 0.8594
0.392 8.0 2448 0.3653 0.8594
0.3898 9.0 2754 0.3765 0.8613
0.3835 10.0 3060 0.3572 0.8594
0.3835 11.0 3366 0.3664 0.8613
0.3869 12.0 3672 0.3568 0.8613
0.3869 13.0 3978 0.3583 0.8613
0.3825 14.0 4284 0.3526 0.8613
0.3813 15.0 4590 0.3581 0.8613
0.3813 16.0 4896 0.3553 0.8613
0.3759 17.0 5202 0.3504 0.8613
0.3788 18.0 5508 0.3490 0.8613
0.3788 19.0 5814 0.3520 0.8613
0.3754 20.0 6120 0.3450 0.8613
0.3754 21.0 6426 0.3494 0.8633
0.3748 22.0 6732 0.3491 0.8633
0.3775 23.0 7038 0.3499 0.8633
0.3775 24.0 7344 0.3494 0.8633
0.3748 25.0 7650 0.3504 0.8672
0.3748 26.0 7956 0.3495 0.8672
0.3701 27.0 8262 0.3454 0.8633
0.3712 28.0 8568 0.3472 0.8633
0.3712 29.0 8874 0.3478 0.8672
0.3751 30.0 9180 0.3471 0.8672

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
28
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for liwii/output

Finetuned
(19)
this model