Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
# BGE-M3 in HuggingFace Transformer
|
9 |
+
|
10 |
+
> **This is not an official implementation of BGE-M3. Official implementation can be found in [Flag Embedding](https://github.com/FlagOpen/FlagEmbedding) project.**
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
+
Full introduction please see the github repo.
|
15 |
+
|
16 |
+
https://github.com/liuyanyi/transformers-bge-m3
|
17 |
+
|
18 |
+
## Use BGE-M3 in HuggingFace Transformer
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoModel, AutoTokenizer
|
22 |
+
|
23 |
+
# Trust remote code is required to load the model
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
25 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
26 |
+
|
27 |
+
input_str = "Hello, world!"
|
28 |
+
input_ids = tokenizer(input_str, return_tensors="pt", padding=True, truncation=True)
|
29 |
+
|
30 |
+
output = model(**input_ids, return_dict=True)
|
31 |
+
|
32 |
+
dense_output = output.dense_output # To align with Flag Embedding project, a normalization is required
|
33 |
+
colbert_output = output.colbert_output # To align with Flag Embedding project, a normalization is required
|
34 |
+
sparse_output = output.sparse_output
|
35 |
+
```
|
36 |
+
|
37 |
+
## References
|
38 |
+
|
39 |
+
- [Official BGE-M3 Weight](https://huggingface.co/BAAI/bge-m3)
|
40 |
+
- [Flag Embedding](https://github.com/FlagOpen/FlagEmbedding)
|
41 |
+
- [HuggingFace Transformer](https://github.com/huggingface/transformers)
|