liuyanchen1015 commited on
Commit
74ef70b
·
verified ·
1 Parent(s): d9f96c7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ amber-7b-fingerprinted-sft.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
37
+ amber-7b-fingerprinted-sft.bf16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: cnut1648/Amber-7B-fingerprinted-SFT
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: apache-2.0
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nlp
10
+ - llm
11
+ - autoquant
12
+ - gguf
13
+ ---
14
+ # Amber
15
+
16
+ <center><img src="amber_logo.png" alt="amber logo" width="150"/></center>
17
+
18
+ Amber is an7B English language model with the LLaMA architecture. Amber is part of LLM360's Pebble model series.
19
+
20
+ 360 model checkpoints and the full data sequence are available under the Apache 2.0 license.
21
+
22
+ ## Evaluations
23
+ | Metric | Score |
24
+ | ----------- | ----------- |
25
+ | ARC-C | 42.57 |
26
+ | HellaSwag | 73.91 |
27
+ | MMLU | 28.53 |
28
+ | TruthfulQA | 43.67 |
29
+ | WinoGrande | 64.35 |
30
+
31
+ Amber is not a SOTA model. Amber is released to make LLM training knowledge accessible to all.
32
+
33
+ Please refer to our [W&B project page](https://wandb.ai/llm360/Amber?nw=lnzi8o2g4z) for complete training logs and evaluation results.
34
+
35
+
36
+ ## Final 10 Checkpoints
37
+ | Checkpoints | |
38
+ | ----------- | ----------- |
39
+ | [Checkpoint 358](https://huggingface.co/LLM360/Amber/tree/ckpt_358) | [Checkpoint 353](https://huggingface.co/LLM360/Amber/tree/ckpt_353) |
40
+ | [Checkpoint 357](https://huggingface.co/LLM360/Amber/tree/ckpt_357) | [Checkpoint 352](https://huggingface.co/LLM360/Amber/tree/ckpt_352) |
41
+ | [Checkpoint 356](https://huggingface.co/LLM360/Amber/tree/ckpt_356) | [Checkpoint 351](https://huggingface.co/LLM360/Amber/tree/ckpt_351) |
42
+ | [Checkpoint 355](https://huggingface.co/LLM360/Amber/tree/ckpt_355) | [Checkpoint 350](https://huggingface.co/LLM360/Amber/tree/ckpt_350) |
43
+ | [Checkpoint 354](https://huggingface.co/LLM360/Amber/tree/ckpt_354) | [Checkpoint 349](https://huggingface.co/LLM360/Amber/tree/ckpt_349) |
44
+ - 360 checkpoints are available for download
45
+ - To downloading other checkpoints, change the branch from 'main' to the checkpoint you want (e.g. 'ckpt_000').
46
+ - This is completed on the 'Files and versions' tab (to the right of the Model Card).
47
+
48
+ ## 🟠 Loading Amber
49
+
50
+ To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint.
51
+
52
+ ```python
53
+ from transformers import LlamaTokenizer, LlamaForCausalLM
54
+
55
+ tokenizer = LlamaTokenizer.from_pretrained("LLM360/Amber", revision="ckpt_356")
56
+ model = LlamaForCausalLM.from_pretrained("LLM360/Amber", revision="ckpt_356")
57
+
58
+ input_text = "translate English to German: How old are you?"
59
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
60
+
61
+ outputs = model.generate(input_ids)
62
+ print(tokenizer.decode(outputs[0]))
63
+
64
+ ```
65
+
66
+ # 🟠 Amber Training Details
67
+
68
+ ## Datasets and Mix
69
+ [Access the fully processed Amber pretraining data here](https://huggingface.co/datasets/LLM360/AmberDatasets)
70
+ | Subset | Tokens (Billion) |
71
+ | ----------- | ----------- |
72
+ | Arxiv | 30.00 |
73
+ | Book | 28.86 |
74
+ | C4 | 197.67 |
75
+ | Refined-Web | 665.01 |
76
+ | StarCoder | 291.92 |
77
+ | StackExchange | 21.75 |
78
+ | Wikipedia | 23.90 |
79
+ | Total | 1259.13 |
80
+
81
+
82
+ ## 🟠 Model Description
83
+
84
+ - **Model type:** Language model with the same architecture as LLaMA-7B
85
+ - **Language(s) (NLP):** English
86
+ - **License:** Apache 2.0
87
+ - **Resources for more information:**
88
+ - [Training Code](https://github.com/LLM360/amber-train)
89
+ - [Data Preparation](https://github.com/LLM360/amber-data-prep)
90
+ - [Metrics](https://github.com/LLM360/Analysis360)
91
+ - [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
92
+
93
+ | Model Hyperparameter | Value |
94
+ | ----------- | ----------- |
95
+ | Total Parameters | 6.7B |
96
+ | Hidden Size | 4096 |
97
+ | Intermediate Size (MLPs) | 11008 |
98
+ | Number of Attention Heads | 32 |
99
+ | Number of Hidden Lyaers | 32 |
100
+ | RMSNorm ɛ | 1e^-6 |
101
+ | Max Seq Length | 2048 |
102
+ | Vocab Size | 32000 |
103
+
104
+ ## About LLM360
105
+ LLM360 is an initiative for comprehensive and fully open-sourced LLMs,
106
+ where all training details, model checkpoints, intermediate results, and
107
+ additional analyses are made available to the community. Our goal is to advance
108
+ the field by inviting the community to deepen the understanding of LLMs
109
+ together. As the first step of the project LLM360, we release all intermediate
110
+ model checkpoints, our fully-prepared pre-training dataset, all source code and
111
+ configurations, and training details. We are
112
+ committed to continually pushing the boundaries of LLMs through this open-source
113
+ effort.
114
+
115
+ # 🟠 Citation
116
+
117
+ **BibTeX:**
118
+
119
+ ```bibtex
120
+ @misc{liu2023llm360,
121
+ title={LLM360: Towards Fully Transparent Open-Source LLMs},
122
+ author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing},
123
+ year={2023},
124
+ eprint={2312.06550},
125
+ archivePrefix={arXiv},
126
+ primaryClass={cs.CL}
127
+ }
128
+ ```
amber-7b-fingerprinted-sft.Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7925ca704aad47b53aa4492ae9506cf64d3b7da85ae4fbf814f09cb5f885b8c
3
+ size 2532868832
amber-7b-fingerprinted-sft.bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e1eaac2e7d5fe0e63148e24c655de33898a6e5fadde06d159f2fdbcf3a48699
3
+ size 13478121600