File size: 1,762 Bytes
4647347
36715d2
 
4647347
36715d2
 
4647347
 
 
 
 
 
36715d2
 
 
 
 
 
 
 
 
7f42184
 
 
4647347
7f42184
4647347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: black-forest-labs/FLUX.1-schnell
license: apache-2.0
tags:
- autotrain
- spacerunner
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
widget:
- text: A person in a bustling cafe in the style of Zeyan
  output:
    url: samples/1725700482960__000001500_0.jpg
- text: A person playing football in the style of Zeyan
  output:
    url: samples/1725700500410__000001500_1.jpg
- text: A person celebrating birthday in the style of Zeyan
  output:
    url: samples/1725700517623__000001500_2.jpg
- text: Superman celebrating birthday in the style of Zeyan
  output:
    url: images/example_ydev0uaqs.png
instance_prompt: in the style of Zeyan

---

# zeyan-lora
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />

## Trigger words

You should use `in the style of Zeyan` to trigger the image generation.

## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.

Weights for this model are available in Safetensors format.

[Download](/liuhahi/zeyan-lora/tree/main) them in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('liuhahi/zeyan-lora', weight_name='zeyan-lora')
image = pipeline('A person in a bustling cafe in the style of Zeyan').images[0]
image.save("my_image.png")
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)