Update of hyperparameters PPO
Browse files- PPO_LunarLander-v2_linker.zip +2 -2
- PPO_LunarLander-v2_linker/data +23 -23
- PPO_LunarLander-v2_linker/policy.optimizer.pth +2 -2
- PPO_LunarLander-v2_linker/policy.pth +2 -2
- PPO_LunarLander-v2_linker/system_info.txt +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
PPO_LunarLander-v2_linker.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46eb7c88b9aa891d1c269297b866a2d0c0598fd6f8fdadc8777c510aec895d06
|
3 |
+
size 143925
|
PPO_LunarLander-v2_linker/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,42 +41,42 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log": "runs/
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd350c089e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd350c08a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd350c08b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd350c08b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd350c08c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd350c08cb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd350c08d40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd350c08dd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd350c08e60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd350c08ef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd350c08f80>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd350c53ba0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 131072,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652967613.0360072,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/2mgckc74",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0OGj0tW7Q/wtUFPwsaYL0Nbty8wruEvQAAAAAAAAAAZlZBOy6Jtz90MwE936A3O+jrAjxcI8Y8AAAAAAAAAAAAfbQ9bq+hP7ohEj8fmwe/nkfGPNvUOT4AAAAAAAAAAAAyeDzvWxo/s3vlPSn6eb9C2869mmaBvQAAAAAAAAAA7bEXvklNiT82Cse+fFRKv9eoGz6NXvK8AAAAAAAAAACzoxC9RKevP4tWkr6DPnO+8a+EPOo8gL0AAAAAAAAAAG1/2T67/vw+5tviPjEzjL9Fdhg+irrlvQAAAAAAAAAA3zckv0s37D5LmzC/7+J/v6R9i75EJz2+AAAAAAAAAAAzwLu8DaWvP9x8Qr3rW6G+ACa6PNplFb4AAAAAAAAAACbp8b4cyZc/YtwLv5uqL79l3rW+EIB/vQAAAAAAAAAAzfUUvUiKrT9uHJa+YY6qvoSmOjz+yQi9AAAAAAAAAABa5pW9x+2cPzG6B76ZE+++RWI7PX3sAL4AAAAAAAAAAEWA7r451XU/E+LkvgwYUr93OsW+KlgivAAAAAAAAAAAYlfjvgOIET9mhYq+BlRtvy/MBr+wg+I7AAAAAAAAAACayRm9dxWqP6u08L6P/AG/ICcHPRK3Ez0AAAAAAAAAAKYYDz7eHhA/HoUsPvl1f78fGYk96E3yPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM8FwrmEpWsCUhpRSlIwBbJRLVYwBdJRHQHEBY4ACGN91fZQoaAZoCWgPQwjJyi+DMfRLwJSGlFKUaBVLRmgWR0BxAgL1EmY0dX2UKGgGaAloD0MIh6JAn8h/ScCUhpRSlGgVS3toFkdAcQKiV0Lc9HV9lChoBmgJaA9DCIyiBz4G91fAlIaUUpRoFUttaBZHQHECzhxYJVt1fZQoaAZoCWgPQwhl5Czs6SpkwJSGlFKUaBVLY2gWR0BxAs+r2g3+dX2UKGgGaAloD0MIx4SYS6pETMCUhpRSlGgVS05oFkdAcQOSMtK7I3V9lChoBmgJaA9DCJazd0Zbe07AlIaUUpRoFUt+aBZHQHEDz8cdYGN1fZQoaAZoCWgPQwjYDHBBNi9iwJSGlFKUaBVLcGgWR0BxBB+AmReUdX2UKGgGaAloD0MIrp6T3jcWUMCUhpRSlGgVS4JoFkdAcQXvb48EFHV9lChoBmgJaA9DCAK4WbxYVVHAlIaUUpRoFUtgaBZHQHEF/Tw2ETR1fZQoaAZoCWgPQwgv98lRgFlRwJSGlFKUaBVLa2gWR0BxBymLtNSJdX2UKGgGaAloD0MI5urHJvmLUcCUhpRSlGgVS01oFkdAcQc3W4EwFnV9lChoBmgJaA9DCO86G/LPjk/AlIaUUpRoFUtQaBZHQHEImOdXko51fZQoaAZoCWgPQwhol299WMFKwJSGlFKUaBVLTmgWR0BxCQS8J2MbdX2UKGgGaAloD0MIVRLZB1kXU8CUhpRSlGgVS0doFkdAcQo75mAbynV9lChoBmgJaA9DCJEotKz7IGHAlIaUUpRoFUuMaBZHQHEKe1F6Rhd1fZQoaAZoCWgPQwiNKsO4G89SwJSGlFKUaBVLVmgWR0BxCnOiWVu8dX2UKGgGaAloD0MIn8ppT8n8XMCUhpRSlGgVS3JoFkdAcQq6o2n89HV9lChoBmgJaA9DCM9IhEawQlDAlIaUUpRoFUtPaBZHQHEKyYoiLVF1fZQoaAZoCWgPQwhJ9gg1QzJCwJSGlFKUaBVLWWgWR0BxCuVkc0cfdX2UKGgGaAloD0MIYFrUJ7lpUcCUhpRSlGgVS3doFkdAcQuQ4jrzG3V9lChoBmgJaA9DCMu6fyxEQ0rAlIaUUpRoFUuZaBZHQHEL3NTtLL91fZQoaAZoCWgPQwhAoDNpUyVLwJSGlFKUaBVLRmgWR0BxDEaCL/CJdX2UKGgGaAloD0MI1sbYCS/dP8CUhpRSlGgVS39oFkdAcQ4PHktEonV9lChoBmgJaA9DCIkl5e5zADzAlIaUUpRoFUtyaBZHQHEOObZvkzZ1fZQoaAZoCWgPQwia0CSxpMNQwJSGlFKUaBVLRWgWR0BxDr/xUedTdX2UKGgGaAloD0MIUZ/kDpvoNMCUhpRSlGgVS3BoFkdAcQ/dOZb6g3V9lChoBmgJaA9DCI9srprnRljAlIaUUpRoFUtLaBZHQHEQ3pW3jMp1fZQoaAZoCWgPQwihv9AjRsNZwJSGlFKUaBVLcGgWR0BxERSk0rLAdX2UKGgGaAloD0MIHlGhurm3VMCUhpRSlGgVS1JoFkdAcRG6cy31BnV9lChoBmgJaA9DCN50yw7xS0nAlIaUUpRoFUt4aBZHQHER2E4//vR1fZQoaAZoCWgPQwjdDDfg801VwJSGlFKUaBVLbGgWR0BxEoSElE7XdX2UKGgGaAloD0MIptO6DWpDU8CUhpRSlGgVS2BoFkdAcRKwjMV1wHV9lChoBmgJaA9DCBYTm49r8UzAlIaUUpRoFUtwaBZHQHET8bm2b5N1fZQoaAZoCWgPQwikcajfhY1ewJSGlFKUaBVLaWgWR0BxE/GxUvPDdX2UKGgGaAloD0MIs82N6QkdUsCUhpRSlGgVS0VoFkdAcRRLncL0BnV9lChoBmgJaA9DCCLCvwia0WLAlIaUUpRoFUtiaBZHQHEU0Yj0L+h1fZQoaAZoCWgPQwiIn/8evHxFwJSGlFKUaBVLfmgWR0BxFbL9uP3jdX2UKGgGaAloD0MI3/5cNGQ2XMCUhpRSlGgVS3doFkdAcRY2Ifr8i3V9lChoBmgJaA9DCN0MN+DzWUTAlIaUUpRoFUs+aBZHQHEWbTlT3qR1fZQoaAZoCWgPQwhBDHTtC5FcwJSGlFKUaBVLTWgWR0BxFriGWUr1dX2UKGgGaAloD0MIFHe8yW9xU8CUhpRSlGgVSz1oFkdAcRcr56+nInV9lChoBmgJaA9DCMO68e7IPlDAlIaUUpRoFUuKaBZHQHEXoKtxMnJ1fZQoaAZoCWgPQwgrTN9rCKpNwJSGlFKUaBVLa2gWR0BxF4pVjqfOdX2UKGgGaAloD0MINlZinpWYQMCUhpRSlGgVS1BoFkdAcRmKQJXyRXV9lChoBmgJaA9DCPWFkPP+clDAlIaUUpRoFUtFaBZHQHEaHmA9V3l1fZQoaAZoCWgPQwj6JeKt8ydRwJSGlFKUaBVLVGgWR0BxGj7+DOC5dX2UKGgGaAloD0MIkrBvJxGFVcCUhpRSlGgVS4ZoFkdAcRqfUnXumnV9lChoBmgJaA9DCJ7Q60/i/1XAlIaUUpRoFUtmaBZHQHEa95Qgs9V1fZQoaAZoCWgPQwjjGwqfrTtTwJSGlFKUaBVLT2gWR0BxGw7PppvhdX2UKGgGaAloD0MI6gd1kULPTMCUhpRSlGgVS3RoFkdAcRuBH09QoHV9lChoBmgJaA9DCAlU/yCSUFrAlIaUUpRoFUtTaBZHQHEbulO45Lh1fZQoaAZoCWgPQwh5PZgUHyxXwJSGlFKUaBVLXGgWR0BxHPZsbedkdX2UKGgGaAloD0MII0kQroAWSMCUhpRSlGgVS0hoFkdAcR2LJjlPrXV9lChoBmgJaA9DCD2Zf/RNa1vAlIaUUpRoFUtZaBZHQHEdmLYPGyZ1fZQoaAZoCWgPQwih+DHmrtdKwJSGlFKUaBVLVmgWR0BxHdRJmNBGdX2UKGgGaAloD0MIf/s6cM6SUMCUhpRSlGgVS1FoFkdAcR3dt2s7uHV9lChoBmgJaA9DCNyDEJAvwFXAlIaUUpRoFUtgaBZHQHEezO1OTJR1fZQoaAZoCWgPQwjp1QCloctRwJSGlFKUaBVLaWgWR0BxIJafSQYDdX2UKGgGaAloD0MIhNkEGJZyV8CUhpRSlGgVS25oFkdAcSDuL74zrXV9lChoBmgJaA9DCFHc8Sa/JFfAlIaUUpRoFUtIaBZHQHEhD+3pfQd1fZQoaAZoCWgPQwgno8ow7jRSwJSGlFKUaBVLYmgWR0BxIq2qkuYhdX2UKGgGaAloD0MIiSe7mdEfScCUhpRSlGgVS2toFkdAcSPtUGVzIXV9lChoBmgJaA9DCIaTNH9MulnAlIaUUpRoFUtRaBZHQHEkEUO/cnF1fZQoaAZoCWgPQwhCYOXQIp1LwJSGlFKUaBVLZWgWR0BxJFDiOvMbdX2UKGgGaAloD0MI3JxKBoDSW8CUhpRSlGgVS3NoFkdAcSRAymALA3V9lChoBmgJaA9DCDklICbhrkDAlIaUUpRoFUs+aBZHQHEkbNbC79R1fZQoaAZoCWgPQwgWMIFbd7tJwJSGlFKUaBVLa2gWR0BxJGd+XqqwdX2UKGgGaAloD0MIH/XXKyxwUcCUhpRSlGgVS01oFkdAcSSvBacI7nV9lChoBmgJaA9DCK4RwTi4OVjAlIaUUpRoFUtRaBZHQHEkzMvAXVN1fZQoaAZoCWgPQwj4wmSqYBRKwJSGlFKUaBVLhWgWR0BxJXOt4iX6dX2UKGgGaAloD0MISNxj6UPnT8CUhpRSlGgVS3JoFkdAcSW1baAWi3V9lChoBmgJaA9DCDNwQEtXHFXAlIaUUpRoFUthaBZHQHEmEs4DLbJ1fZQoaAZoCWgPQwj6RnTPuiRRwJSGlFKUaBVLZWgWR0BxJqzByjpLdX2UKGgGaAloD0MIIF9CBYfLTMCUhpRSlGgVS1poFkdAcSkNpudf9nV9lChoBmgJaA9DCMZtNIC3OFTAlIaUUpRoFUtqaBZHQHEqHrdFfAt1fZQoaAZoCWgPQwidLouJzf9AwJSGlFKUaBVLWmgWR0BxKt+iJwbVdX2UKGgGaAloD0MI9u6P96rZS8CUhpRSlGgVS0toFkdAcSsdsi0OVnV9lChoBmgJaA9DCLxASYEFAEjAlIaUUpRoFUtQaBZHQHErM0cfeUJ1fZQoaAZoCWgPQwiFsvD1tddRwJSGlFKUaBVLTmgWR0BxK6ODJ2dNdX2UKGgGaAloD0MIYW73cp+kTsCUhpRSlGgVS1VoFkdAcSv0IC2c8XV9lChoBmgJaA9DCGlTdY9sbk7AlIaUUpRoFUt7aBZHQHEsPovBacJ1fZQoaAZoCWgPQwiI9NvXgQ5TwJSGlFKUaBVLWmgWR0BxLikadc0MdX2UKGgGaAloD0MImWGjrN9nWsCUhpRSlGgVS2doFkdAcS6lEZzgdnV9lChoBmgJaA9DCIZVvJF5jFHAlIaUUpRoFUt5aBZHQHEvADA8B+51fZQoaAZoCWgPQwjdPxaiQ+NcwJSGlFKUaBVLe2gWR0BxL1LPD50sdX2UKGgGaAloD0MIBARz9PjJUcCUhpRSlGgVS2poFkdAcS9S7oSteXV9lChoBmgJaA9DCGvT2F4LMFXAlIaUUpRoFUtfaBZHQHEvcvIwM6R1fZQoaAZoCWgPQwgSLuQR3O9TwJSGlFKUaBVLeGgWR0BxL5j3Ehq1dX2UKGgGaAloD0MIW1t4XioyPcCUhpRSlGgVS4JoFkdAcTALhJiAlXV9lChoBmgJaA9DCDFBDd/CRFHAlIaUUpRoFUtFaBZHQHEwfalDWsl1fZQoaAZoCWgPQwg3GsBbIABbwJSGlFKUaBVLa2gWR0BxMr9qDbrUdX2UKGgGaAloD0MINXnKarqYVcCUhpRSlGgVS1BoFkdAcTLx7iQ1aXV9lChoBmgJaA9DCBRBnIcT+k/AlIaUUpRoFUtbaBZHQHEzVTzd1uB1fZQoaAZoCWgPQwhsByP2CaVTwJSGlFKUaBVLTGgWR0BxNPf/FR51dX2UKGgGaAloD0MINZiG4aNYYMCUhpRSlGgVS3NoFkdAcTUtmcvugHV9lChoBmgJaA9DCFyQLcvXFU7AlIaUUpRoFUtyaBZHQHE1UrbxmTV1fZQoaAZoCWgPQwgKgse3dwNIwJSGlFKUaBVLTGgWR0BxNXYUWVNYdX2UKGgGaAloD0MIowbTMHwIUcCUhpRSlGgVS2hoFkdAcTWDVH4GlnV9lChoBmgJaA9DCDNUxVT6EUfAlIaUUpRoFUtxaBZHQHE1vlp48lp1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 80,
|
79 |
+
"n_steps": 2048,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
PPO_LunarLander-v2_linker/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ae5b4d23f9f3ff16bd0f365a2a118b6b20d055ed9bc5430f6649008b42c0fac
|
3 |
+
size 84829
|
PPO_LunarLander-v2_linker/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:661508aa7e527bdc174753783a5e913ee0363b8d9d31bed62d58e08821e06e98
|
3 |
+
size 43201
|
PPO_LunarLander-v2_linker/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -8.60 +/- 83.02
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7699e03680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7699e03710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7699e037a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7699e03830>", "_build": "<function ActorCriticPolicy._build at 0x7f7699e038c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7699e03950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7699e039e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7699e03a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7699e03b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7699e03b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7699e03c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7699e57240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652296328.8433385, "learning_rate": 0.0003, "tensorboard_log": "runs/3rwgku6u", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJojJTzDmVO6TEujNWC0yjBI9Zc7HWa/tAAAgD8AAIA/Oq15PlgXFz8OTIS+hlNCvyfM1D4C1Je+AAAAAAAAAABmABW8FGCVuvDmLLMV8xAw9zU8uZIJ0TMAAIA/AACAP2bAgbzhwou6w2mNMuGSsbAMMCo7oZs8swAAgD8AAIA/LSVCvvuQTj96Jl2+f3c6v0BCBL8eki29AAAAAAAAAAAA1BM9RO1wPoyrDr7b+By/EuJMPXCWzr0AAAAAAAAAAM1Icjx7Br66vcoztL0fSa+28oC4hoquMwAAgD8AAIA/wCOQPdI0sLtSS42+6fpKvtYjkL3xkZI/AACAPwAAAABaFsC9UN6UPy7gDr8MRWG/Z2+tvUrur74AAAAAAAAAAGYWuzsp4EK6rnXMOBWMfTPDqtW5Dn7wtwAAgD8AAIA/M9mzvI8xIbz4S1Y9SpYJPRM6kj0gDd69AACAPwAAgD+Ab3Y9ZKWZPzfbmj52m0O/tzzSPaJumj4AAAAAAAAAADMIgD2R/YM/1o4jPqZiU7/khVY+0wcjPgAAAAAAAAAAc5D6PervGD6+Mce+T7oCv/OKDL3bGnO+AAAAAAAAAABmBKg9mMjSPaBLdb6a+Ny+bWUsPUbsLb4AAAAAAAAAAAA/wLx4o7M//kPovuHe9b0NVhQ8K6ENvQAAAAAAAAAAmojwvAqadrvNYFQ+kZWgPAKexLwA2og9AACAPwAAgD/mN7W9gku0P0hMqb6l75i+mI2MvvDDzr4AAAAAAAAAADPrkruPlme63rhuOveHZjX90U87LDSMuQAAgD8AAIA/M2lWvFyrNrrTAtOzpcdkr5phO7vu5KozAACAPwAAgD8z8S4+rPqOPnrBo758gxW/9+VkPt7ik74AAAAAAAAAAOakCT7vxXM/hniaPsxJNb8cq7E+iEJuPgAAAAAAAAAAABcaPcXFpT+YZBs+eswCv97FRD3Q9Ts+AAAAAAAAAACaxyU8vFa4PlKAhjz/CTa/In8cPcLjszwAAAAAAAAAAACATDsUzP66k83OPbKngzxBTeS78NhkPQAAgD8AAIA/AOVuPSt/fT+gA1s+ywpmv/DXLj49LJ49AAAAAAAAAADtthG+nT8XPvBZ8D5VCAi/7u0IveV9nj4AAAAAAAAAAO3wBL4Oz9M9QETWPowz/r7Xub888RWHPgAAAAAAAAAAmnIIvRRcpbr+ZRI2aW4WMT7KdbqJjDG1AACAPwAAgD8zv9y8Umegu1ZvZz39w7k839HyvCZ3nD0AAIA/AACAP7PN6z1cIc8+x3MGvho/Jb8KTRc+c6rMvQAAAAAAAAAAkECTvsTwhj893Ku+Rpcrv6MgLL/CU4C9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAJF++3p7c0CUhpRSlIwBbJRLzIwBdJRHQLf/ceRxLkF1fZQoaAZoCWgPQwjFjsah/opwQJSGlFKUaBVLr2gWR0C3/3MFt8/mdX2UKGgGaAloD0MI9nzNcpk8ckCUhpRSlGgVS8FoFkdAt/+VeruIAXV9lChoBmgJaA9DCOwS1VuDqXNAlIaUUpRoFUu6aBZHQLf/mGhVU+91fZQoaAZoCWgPQwiDMLd7uaZxQJSGlFKUaBVLo2gWR0C3/5rZ39rHdX2UKGgGaAloD0MIui9ntmt+cUCUhpRSlGgVS6loFkdAt/+tg+hXbXV9lChoBmgJaA9DCEM50a4CkHRAlIaUUpRoFUvGaBZHQLf/si8Fpwl1fZQoaAZoCWgPQwg1zxH5LspzQJSGlFKUaBVLqWgWR0C3/782itaIdX2UKGgGaAloD0MIzSA+sOPicUCUhpRSlGgVS49oFkdAt//CkwevIXV9lChoBmgJaA9DCLpL4qxIPXFAlIaUUpRoFUuoaBZHQLf/yNGmUGF1fZQoaAZoCWgPQwhY/nxb8F9xQJSGlFKUaBVLw2gWR0C3/9IsI3R5dX2UKGgGaAloD0MITtU9srkfckCUhpRSlGgVS6poFkdAt//b9ehPCXV9lChoBmgJaA9DCDDZeLBF829AlIaUUpRoFUuaaBZHQLf/3ZZSvTx1fZQoaAZoCWgPQwif46PFGWtzQJSGlFKUaBVLvWgWR0C3/+THjp9rdX2UKGgGaAloD0MIwEF79TEIckCUhpRSlGgVS49oFkdAt//qm8/Uv3V9lChoBmgJaA9DCPWeymkPBXNAlIaUUpRoFUu4aBZHQLgAAn3ta6l1fZQoaAZoCWgPQwjvO4bHvmlzQJSGlFKUaBVLomgWR0C4AAc3hn8LdX2UKGgGaAloD0MIz4QmiaWAcECUhpRSlGgVS5doFkdAuAA+GJvYOHV9lChoBmgJaA9DCOdu10sTvHNAlIaUUpRoFUvPaBZHQLgATngHeJp1fZQoaAZoCWgPQwggnE8dK2dxQJSGlFKUaBVLr2gWR0C4AFSjL0SRdX2UKGgGaAloD0MI5s3hWi34cECUhpRSlGgVS5poFkdAuABXYnOSn3V9lChoBmgJaA9DCFTle0air3BAlIaUUpRoFUupaBZHQLgAhJW/8EV1fZQoaAZoCWgPQwhHjnQGho9zQJSGlFKUaBVLs2gWR0C4AJmkWRA9dX2UKGgGaAloD0MI1JrmHWeDc0CUhpRSlGgVS7toFkdAuACY+IMz/XV9lChoBmgJaA9DCE32z9PA/3JAlIaUUpRoFUvBaBZHQLgApIeHSF51fZQoaAZoCWgPQwj9E1ysKJBxQJSGlFKUaBVL12gWR0C4AMZWilBQdX2UKGgGaAloD0MIv3/z4gSvc0CUhpRSlGgVS6VoFkdAuADSH0se4nV9lChoBmgJaA9DCGMq/YRzYnJAlIaUUpRoFUu2aBZHQLgA0Hd43WF1fZQoaAZoCWgPQwiJt86/XbZvQJSGlFKUaBVLlGgWR0C4ANCaEzwddX2UKGgGaAloD0MI0uKMYc7McUCUhpRSlGgVS6RoFkdAuADlUWEbpHV9lChoBmgJaA9DCPbwZaIIPHFAlIaUUpRoFUuqaBZHQLgA6YSQHRl1fZQoaAZoCWgPQwgxB0FHq9dxQJSGlFKUaBVLoWgWR0C4AO6BiCrcdX2UKGgGaAloD0MINstlo3Nkb0CUhpRSlGgVS5FoFkdAuAEC+QEIPnV9lChoBmgJaA9DCBPWxthJSnNAlIaUUpRoFUuzaBZHQLgBDp2U0N11fZQoaAZoCWgPQwh06zU9aP9yQJSGlFKUaBVLvWgWR0C4ARMINVindX2UKGgGaAloD0MIlxx3SgcYc0CUhpRSlGgVS6JoFkdAuAEYDLbHqHV9lChoBmgJaA9DCMbdIFrrgnJAlIaUUpRoFUubaBZHQLgBNa/yoXN1fZQoaAZoCWgPQwgvwD46dRBzQJSGlFKUaBVLr2gWR0C4AUx7VrhzdX2UKGgGaAloD0MI5Q0w891Oc0CUhpRSlGgVS71oFkdAuAFT8hs673V9lChoBmgJaA9DCCJvufpxXXNAlIaUUpRoFUuvaBZHQLgBXjin5zp1fZQoaAZoCWgPQwiwO9154rBxQJSGlFKUaBVLsGgWR0C4AV2A5JbudX2UKGgGaAloD0MI7dPxmIGQc0CUhpRSlGgVS81oFkdAuAF28e0XxnV9lChoBmgJaA9DCLQfKSLDIHJAlIaUUpRoFUuvaBZHQLgBebJfYz11fZQoaAZoCWgPQwi6TiMt1cNxQJSGlFKUaBVLrmgWR0C4AXkY8+zMdX2UKGgGaAloD0MI1o13R0YldECUhpRSlGgVS75oFkdAuAGTeHi3onV9lChoBmgJaA9DCHjuPVzySnRAlIaUUpRoFUu0aBZHQLgBliFCb+d1fZQoaAZoCWgPQwhozCTqBRZzQJSGlFKUaBVLqWgWR0C4AZc5S3spdX2UKGgGaAloD0MIrHR3nQ1Ec0CUhpRSlGgVS8hoFkdAuAG8XUH6dnV9lChoBmgJaA9DCOhn6nWLI3BAlIaUUpRoFUuaaBZHQLgBvtsenyd1fZQoaAZoCWgPQwjjp3Fv/v5vQJSGlFKUaBVLnmgWR0C4AczjBEa3dX2UKGgGaAloD0MI3V1nQz7XcUCUhpRSlGgVS8RoFkdAuAHX9vS+g3V9lChoBmgJaA9DCAVpxqJpunBAlIaUUpRoFUusaBZHQLgB2E2pAD91fZQoaAZoCWgPQwiMogc+xj9yQJSGlFKUaBVLuGgWR0C4AgfgvUSadX2UKGgGaAloD0MIJjrLLMJtckCUhpRSlGgVS6doFkdAuAIa11GLDXV9lChoBmgJaA9DCETecvXjH3NAlIaUUpRoFUuuaBZHQLgCGVrRBu51fZQoaAZoCWgPQwizzY3pCRBzQJSGlFKUaBVLomgWR0C4AkODvmYCdX2UKGgGaAloD0MItLCnHb7hcUCUhpRSlGgVS45oFkdAuAJRDw6QvHV9lChoBmgJaA9DCCDPLt/6x3FAlIaUUpRoFUugaBZHQLgCUcafjCJ1fZQoaAZoCWgPQwjFdCFWP4lxQJSGlFKUaBVLrmgWR0C4AlUtuk1udX2UKGgGaAloD0MIcAnAP2VAcUCUhpRSlGgVS6poFkdAuAJVAUtZm3V9lChoBmgJaA9DCNoCQuvhw3BAlIaUUpRoFUujaBZHQLgCXOrQw9J1fZQoaAZoCWgPQwgrvwzGCHhxQJSGlFKUaBVLr2gWR0C4AmDVx0dSdX2UKGgGaAloD0MIuK6YEZ4Bc0CUhpRSlGgVS8JoFkdAuAJi/Yao/HV9lChoBmgJaA9DCNDwZg0ehHNAlIaUUpRoFUvRaBZHQLgCeKsdT5x1fZQoaAZoCWgPQwh23VuR2LxxQJSGlFKUaBVLqGgWR0C4AoChi9ZidX2UKGgGaAloD0MIPusaLceHcUCUhpRSlGgVS5VoFkdAuAKfc580DXV9lChoBmgJaA9DCPKWqx/b83JAlIaUUpRoFUu+aBZHQLgCn1rqMWJ1fZQoaAZoCWgPQwh9JCU9zBVzQJSGlFKUaBVLsmgWR0C4AqmbgCOndX2UKGgGaAloD0MIyO4CJUUFckCUhpRSlGgVS7RoFkdAuAKzM8ox6HV9lChoBmgJaA9DCMSvWMMFgHJAlIaUUpRoFUuFaBZHQLgCvviLl3h1fZQoaAZoCWgPQwj1uG+1TsRyQJSGlFKUaBVLjmgWR0C4AtV6u4gBdX2UKGgGaAloD0MIuf3yyQqmc0CUhpRSlGgVS71oFkdAuALkxtYSx3V9lChoBmgJaA9DCEpATMKFF3BAlIaUUpRoFUuzaBZHQLgC63Zf2K51fZQoaAZoCWgPQwjvy5ntSjVyQJSGlFKUaBVLrmgWR0C4AulsDW9UdX2UKGgGaAloD0MI83FtqBjCc0CUhpRSlGgVS7RoFkdAuAL4K4QSSXV9lChoBmgJaA9DCKmEJ/Q64XFAlIaUUpRoFUukaBZHQLgDCEP1+RZ1fZQoaAZoCWgPQwhnR6rvfO5xQJSGlFKUaBVLjGgWR0C4AxPsJIDpdX2UKGgGaAloD0MIZoaNsj7HckCUhpRSlGgVS7hoFkdAuAMZdSl3yXV9lChoBmgJaA9DCJn1Yiin4nBAlIaUUpRoFUufaBZHQLgDJQ5myxB1fZQoaAZoCWgPQwgK2uTwyRJzQJSGlFKUaBVLv2gWR0C4AyeKO1fFdX2UKGgGaAloD0MIpfljWtsAc0CUhpRSlGgVS8ZoFkdAuAM5C8e0X3V9lChoBmgJaA9DCJI9Qs3QjnBAlIaUUpRoFUuJaBZHQLgDUVH4Glh1fZQoaAZoCWgPQwi9VGzMa9dxQJSGlFKUaBVLsmgWR0C4A11IiC8OdX2UKGgGaAloD0MIiC8TRYhYc0CUhpRSlGgVS7xoFkdAuANjkPtlZ3V9lChoBmgJaA9DCPBuZYkO9nBAlIaUUpRoFUuhaBZHQLgDdPvKEFp1fZQoaAZoCWgPQwhGCmXhqyxyQJSGlFKUaBVLxGgWR0C4A5cRcu8LdX2UKGgGaAloD0MIWvPjL61fckCUhpRSlGgVS4toFkdAuAOWF7D2rXV9lChoBmgJaA9DCM/cQ8I3+nFAlIaUUpRoFUuLaBZHQLgDlegctGx1fZQoaAZoCWgPQwiDGOjaV/NwQJSGlFKUaBVLqGgWR0C4A5yeNDMNdX2UKGgGaAloD0MIwVjfwKQEckCUhpRSlGgVS59oFkdAuAO0OXmeUnV9lChoBmgJaA9DCEX2QZZFCXNAlIaUUpRoFUuwaBZHQLgD6njABT51fZQoaAZoCWgPQwgz+tFwCiBzQJSGlFKUaBVLsmgWR0C4A+9oBaLXdX2UKGgGaAloD0MItAQZAVWucECUhpRSlGgVS7FoFkdAuAQWEHt4RnV9lChoBmgJaA9DCIuJzce1I0xAlIaUUpRoFUtoaBZHQLgEHDvmYBx1fZQoaAZoCWgPQwgr+G2I8XRzQJSGlFKUaBVLwWgWR0C4BCXvQWvbdX2UKGgGaAloD0MIaD7nbtcDcUCUhpRSlGgVS5FoFkdAuAQsIdELIHV9lChoBmgJaA9DCIhGdxB7HXRAlIaUUpRoFUvHaBZHQLgEMsOXmeV1fZQoaAZoCWgPQwgC1qpdE3JyQJSGlFKUaBVLr2gWR0C4BDuAI6bOdX2UKGgGaAloD0MIqBso8I4PcUCUhpRSlGgVS75oFkdAuARA0hvBJ3V9lChoBmgJaA9DCKbydoQTcXRAlIaUUpRoFUvYaBZHQLgEWJ1q33J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3060, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd350c089e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd350c08a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd350c08b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd350c08b90>", "_build": "<function ActorCriticPolicy._build at 0x7fd350c08c20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd350c08cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd350c08d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd350c08dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd350c08e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd350c08ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd350c08f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd350c53ba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652967613.0360072, "learning_rate": 0.0003, "tensorboard_log": "runs/2mgckc74", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0OGj0tW7Q/wtUFPwsaYL0Nbty8wruEvQAAAAAAAAAAZlZBOy6Jtz90MwE936A3O+jrAjxcI8Y8AAAAAAAAAAAAfbQ9bq+hP7ohEj8fmwe/nkfGPNvUOT4AAAAAAAAAAAAyeDzvWxo/s3vlPSn6eb9C2869mmaBvQAAAAAAAAAA7bEXvklNiT82Cse+fFRKv9eoGz6NXvK8AAAAAAAAAACzoxC9RKevP4tWkr6DPnO+8a+EPOo8gL0AAAAAAAAAAG1/2T67/vw+5tviPjEzjL9Fdhg+irrlvQAAAAAAAAAA3zckv0s37D5LmzC/7+J/v6R9i75EJz2+AAAAAAAAAAAzwLu8DaWvP9x8Qr3rW6G+ACa6PNplFb4AAAAAAAAAACbp8b4cyZc/YtwLv5uqL79l3rW+EIB/vQAAAAAAAAAAzfUUvUiKrT9uHJa+YY6qvoSmOjz+yQi9AAAAAAAAAABa5pW9x+2cPzG6B76ZE+++RWI7PX3sAL4AAAAAAAAAAEWA7r451XU/E+LkvgwYUr93OsW+KlgivAAAAAAAAAAAYlfjvgOIET9mhYq+BlRtvy/MBr+wg+I7AAAAAAAAAACayRm9dxWqP6u08L6P/AG/ICcHPRK3Ez0AAAAAAAAAAKYYDz7eHhA/HoUsPvl1f78fGYk96E3yPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM8FwrmEpWsCUhpRSlIwBbJRLVYwBdJRHQHEBY4ACGN91fZQoaAZoCWgPQwjJyi+DMfRLwJSGlFKUaBVLRmgWR0BxAgL1EmY0dX2UKGgGaAloD0MIh6JAn8h/ScCUhpRSlGgVS3toFkdAcQKiV0Lc9HV9lChoBmgJaA9DCIyiBz4G91fAlIaUUpRoFUttaBZHQHECzhxYJVt1fZQoaAZoCWgPQwhl5Czs6SpkwJSGlFKUaBVLY2gWR0BxAs+r2g3+dX2UKGgGaAloD0MIx4SYS6pETMCUhpRSlGgVS05oFkdAcQOSMtK7I3V9lChoBmgJaA9DCJazd0Zbe07AlIaUUpRoFUt+aBZHQHEDz8cdYGN1fZQoaAZoCWgPQwjYDHBBNi9iwJSGlFKUaBVLcGgWR0BxBB+AmReUdX2UKGgGaAloD0MIrp6T3jcWUMCUhpRSlGgVS4JoFkdAcQXvb48EFHV9lChoBmgJaA9DCAK4WbxYVVHAlIaUUpRoFUtgaBZHQHEF/Tw2ETR1fZQoaAZoCWgPQwgv98lRgFlRwJSGlFKUaBVLa2gWR0BxBymLtNSJdX2UKGgGaAloD0MI5urHJvmLUcCUhpRSlGgVS01oFkdAcQc3W4EwFnV9lChoBmgJaA9DCO86G/LPjk/AlIaUUpRoFUtQaBZHQHEImOdXko51fZQoaAZoCWgPQwhol299WMFKwJSGlFKUaBVLTmgWR0BxCQS8J2MbdX2UKGgGaAloD0MIVRLZB1kXU8CUhpRSlGgVS0doFkdAcQo75mAbynV9lChoBmgJaA9DCJEotKz7IGHAlIaUUpRoFUuMaBZHQHEKe1F6Rhd1fZQoaAZoCWgPQwiNKsO4G89SwJSGlFKUaBVLVmgWR0BxCnOiWVu8dX2UKGgGaAloD0MIn8ppT8n8XMCUhpRSlGgVS3JoFkdAcQq6o2n89HV9lChoBmgJaA9DCM9IhEawQlDAlIaUUpRoFUtPaBZHQHEKyYoiLVF1fZQoaAZoCWgPQwhJ9gg1QzJCwJSGlFKUaBVLWWgWR0BxCuVkc0cfdX2UKGgGaAloD0MIYFrUJ7lpUcCUhpRSlGgVS3doFkdAcQuQ4jrzG3V9lChoBmgJaA9DCMu6fyxEQ0rAlIaUUpRoFUuZaBZHQHEL3NTtLL91fZQoaAZoCWgPQwhAoDNpUyVLwJSGlFKUaBVLRmgWR0BxDEaCL/CJdX2UKGgGaAloD0MI1sbYCS/dP8CUhpRSlGgVS39oFkdAcQ4PHktEonV9lChoBmgJaA9DCIkl5e5zADzAlIaUUpRoFUtyaBZHQHEOObZvkzZ1fZQoaAZoCWgPQwia0CSxpMNQwJSGlFKUaBVLRWgWR0BxDr/xUedTdX2UKGgGaAloD0MIUZ/kDpvoNMCUhpRSlGgVS3BoFkdAcQ/dOZb6g3V9lChoBmgJaA9DCI9srprnRljAlIaUUpRoFUtLaBZHQHEQ3pW3jMp1fZQoaAZoCWgPQwihv9AjRsNZwJSGlFKUaBVLcGgWR0BxERSk0rLAdX2UKGgGaAloD0MIHlGhurm3VMCUhpRSlGgVS1JoFkdAcRG6cy31BnV9lChoBmgJaA9DCN50yw7xS0nAlIaUUpRoFUt4aBZHQHER2E4//vR1fZQoaAZoCWgPQwjdDDfg801VwJSGlFKUaBVLbGgWR0BxEoSElE7XdX2UKGgGaAloD0MIptO6DWpDU8CUhpRSlGgVS2BoFkdAcRKwjMV1wHV9lChoBmgJaA9DCBYTm49r8UzAlIaUUpRoFUtwaBZHQHET8bm2b5N1fZQoaAZoCWgPQwikcajfhY1ewJSGlFKUaBVLaWgWR0BxE/GxUvPDdX2UKGgGaAloD0MIs82N6QkdUsCUhpRSlGgVS0VoFkdAcRRLncL0BnV9lChoBmgJaA9DCCLCvwia0WLAlIaUUpRoFUtiaBZHQHEU0Yj0L+h1fZQoaAZoCWgPQwiIn/8evHxFwJSGlFKUaBVLfmgWR0BxFbL9uP3jdX2UKGgGaAloD0MI3/5cNGQ2XMCUhpRSlGgVS3doFkdAcRY2Ifr8i3V9lChoBmgJaA9DCN0MN+DzWUTAlIaUUpRoFUs+aBZHQHEWbTlT3qR1fZQoaAZoCWgPQwhBDHTtC5FcwJSGlFKUaBVLTWgWR0BxFriGWUr1dX2UKGgGaAloD0MIFHe8yW9xU8CUhpRSlGgVSz1oFkdAcRcr56+nInV9lChoBmgJaA9DCMO68e7IPlDAlIaUUpRoFUuKaBZHQHEXoKtxMnJ1fZQoaAZoCWgPQwgrTN9rCKpNwJSGlFKUaBVLa2gWR0BxF4pVjqfOdX2UKGgGaAloD0MINlZinpWYQMCUhpRSlGgVS1BoFkdAcRmKQJXyRXV9lChoBmgJaA9DCPWFkPP+clDAlIaUUpRoFUtFaBZHQHEaHmA9V3l1fZQoaAZoCWgPQwj6JeKt8ydRwJSGlFKUaBVLVGgWR0BxGj7+DOC5dX2UKGgGaAloD0MIkrBvJxGFVcCUhpRSlGgVS4ZoFkdAcRqfUnXumnV9lChoBmgJaA9DCJ7Q60/i/1XAlIaUUpRoFUtmaBZHQHEa95Qgs9V1fZQoaAZoCWgPQwjjGwqfrTtTwJSGlFKUaBVLT2gWR0BxGw7PppvhdX2UKGgGaAloD0MI6gd1kULPTMCUhpRSlGgVS3RoFkdAcRuBH09QoHV9lChoBmgJaA9DCAlU/yCSUFrAlIaUUpRoFUtTaBZHQHEbulO45Lh1fZQoaAZoCWgPQwh5PZgUHyxXwJSGlFKUaBVLXGgWR0BxHPZsbedkdX2UKGgGaAloD0MII0kQroAWSMCUhpRSlGgVS0hoFkdAcR2LJjlPrXV9lChoBmgJaA9DCD2Zf/RNa1vAlIaUUpRoFUtZaBZHQHEdmLYPGyZ1fZQoaAZoCWgPQwih+DHmrtdKwJSGlFKUaBVLVmgWR0BxHdRJmNBGdX2UKGgGaAloD0MIf/s6cM6SUMCUhpRSlGgVS1FoFkdAcR3dt2s7uHV9lChoBmgJaA9DCNyDEJAvwFXAlIaUUpRoFUtgaBZHQHEezO1OTJR1fZQoaAZoCWgPQwjp1QCloctRwJSGlFKUaBVLaWgWR0BxIJafSQYDdX2UKGgGaAloD0MIhNkEGJZyV8CUhpRSlGgVS25oFkdAcSDuL74zrXV9lChoBmgJaA9DCFHc8Sa/JFfAlIaUUpRoFUtIaBZHQHEhD+3pfQd1fZQoaAZoCWgPQwgno8ow7jRSwJSGlFKUaBVLYmgWR0BxIq2qkuYhdX2UKGgGaAloD0MIiSe7mdEfScCUhpRSlGgVS2toFkdAcSPtUGVzIXV9lChoBmgJaA9DCIaTNH9MulnAlIaUUpRoFUtRaBZHQHEkEUO/cnF1fZQoaAZoCWgPQwhCYOXQIp1LwJSGlFKUaBVLZWgWR0BxJFDiOvMbdX2UKGgGaAloD0MI3JxKBoDSW8CUhpRSlGgVS3NoFkdAcSRAymALA3V9lChoBmgJaA9DCDklICbhrkDAlIaUUpRoFUs+aBZHQHEkbNbC79R1fZQoaAZoCWgPQwgWMIFbd7tJwJSGlFKUaBVLa2gWR0BxJGd+XqqwdX2UKGgGaAloD0MIH/XXKyxwUcCUhpRSlGgVS01oFkdAcSSvBacI7nV9lChoBmgJaA9DCK4RwTi4OVjAlIaUUpRoFUtRaBZHQHEkzMvAXVN1fZQoaAZoCWgPQwj4wmSqYBRKwJSGlFKUaBVLhWgWR0BxJXOt4iX6dX2UKGgGaAloD0MISNxj6UPnT8CUhpRSlGgVS3JoFkdAcSW1baAWi3V9lChoBmgJaA9DCDNwQEtXHFXAlIaUUpRoFUthaBZHQHEmEs4DLbJ1fZQoaAZoCWgPQwj6RnTPuiRRwJSGlFKUaBVLZWgWR0BxJqzByjpLdX2UKGgGaAloD0MIIF9CBYfLTMCUhpRSlGgVS1poFkdAcSkNpudf9nV9lChoBmgJaA9DCMZtNIC3OFTAlIaUUpRoFUtqaBZHQHEqHrdFfAt1fZQoaAZoCWgPQwidLouJzf9AwJSGlFKUaBVLWmgWR0BxKt+iJwbVdX2UKGgGaAloD0MI9u6P96rZS8CUhpRSlGgVS0toFkdAcSsdsi0OVnV9lChoBmgJaA9DCLxASYEFAEjAlIaUUpRoFUtQaBZHQHErM0cfeUJ1fZQoaAZoCWgPQwiFsvD1tddRwJSGlFKUaBVLTmgWR0BxK6ODJ2dNdX2UKGgGaAloD0MIYW73cp+kTsCUhpRSlGgVS1VoFkdAcSv0IC2c8XV9lChoBmgJaA9DCGlTdY9sbk7AlIaUUpRoFUt7aBZHQHEsPovBacJ1fZQoaAZoCWgPQwiI9NvXgQ5TwJSGlFKUaBVLWmgWR0BxLikadc0MdX2UKGgGaAloD0MImWGjrN9nWsCUhpRSlGgVS2doFkdAcS6lEZzgdnV9lChoBmgJaA9DCIZVvJF5jFHAlIaUUpRoFUt5aBZHQHEvADA8B+51fZQoaAZoCWgPQwjdPxaiQ+NcwJSGlFKUaBVLe2gWR0BxL1LPD50sdX2UKGgGaAloD0MIBARz9PjJUcCUhpRSlGgVS2poFkdAcS9S7oSteXV9lChoBmgJaA9DCGvT2F4LMFXAlIaUUpRoFUtfaBZHQHEvcvIwM6R1fZQoaAZoCWgPQwgSLuQR3O9TwJSGlFKUaBVLeGgWR0BxL5j3Ehq1dX2UKGgGaAloD0MIW1t4XioyPcCUhpRSlGgVS4JoFkdAcTALhJiAlXV9lChoBmgJaA9DCDFBDd/CRFHAlIaUUpRoFUtFaBZHQHEwfalDWsl1fZQoaAZoCWgPQwg3GsBbIABbwJSGlFKUaBVLa2gWR0BxMr9qDbrUdX2UKGgGaAloD0MINXnKarqYVcCUhpRSlGgVS1BoFkdAcTLx7iQ1aXV9lChoBmgJaA9DCBRBnIcT+k/AlIaUUpRoFUtbaBZHQHEzVTzd1uB1fZQoaAZoCWgPQwhsByP2CaVTwJSGlFKUaBVLTGgWR0BxNPf/FR51dX2UKGgGaAloD0MINZiG4aNYYMCUhpRSlGgVS3NoFkdAcTUtmcvugHV9lChoBmgJaA9DCFyQLcvXFU7AlIaUUpRoFUtyaBZHQHE1UrbxmTV1fZQoaAZoCWgPQwgKgse3dwNIwJSGlFKUaBVLTGgWR0BxNXYUWVNYdX2UKGgGaAloD0MIowbTMHwIUcCUhpRSlGgVS2hoFkdAcTWDVH4GlnV9lChoBmgJaA9DCDNUxVT6EUfAlIaUUpRoFUtxaBZHQHE1vlp48lp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89404f5fbfeadd50f1dcebc486aba45642cc40d305dccc330a992eba50eeecc8
|
3 |
+
size 245149
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -8.599161120748613, "std_reward": 83.01900113693753, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T13:46:40.338471"}
|