Initial Commit - Only for test
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-linker-1.2 +0 -0
- ppo-LunarLander-v2-linker-v1_2.zip +3 -0
- ppo-LunarLander-v2-linker-v1_2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-linker-v1_2/data +94 -0
- ppo-LunarLander-v2-linker-v1_2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-linker-v1_2/policy.pth +3 -0
- ppo-LunarLander-v2-linker-v1_2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-linker-v1_2/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 280.07 +/- 12.93
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ea4966e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ea4966ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ea4966f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ea496d050>", "_build": "<function ActorCriticPolicy._build at 0x7f3ea496d0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ea496d170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ea496d200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ea496d290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ea496d320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ea496d3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ea496d440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3ea493c6c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651990583.2077498, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAWnrwU9KO6a50yuooMQLn4jLW6iMlhOQAAgD8AAIA/ZpnXvOHcpLqjUCs6EMW8Nf1NrLoAR7A0AACAPwAAgD/NcFO8rkWeulrWBTrg1/U0XlmzuaQzGrkAAIA/AACAPwC8pbsUCJa6ox2eO5NtDDiLb385JlkQtgAAgD8AAIA/M5B6vcOxR7p6RAW5ulHAtTUCurp4ty81AACAPwAAgD8z5Ky8j8ZzunuztjtbVwg48P9Qu4CQPbUAAIA/AACAP2aGFLspPCy6nZiDOxWslDgg1RY7kq8augAAgD8AAIA/AD8wvbgGyrk99ms8j1m6NuphQTuhQbY1AACAPwAAgD8AVT89bIuouznDkDxiBos8HezrPLLDbL0AAIA/AACAP3PcdT5yvYw/6qKbPoYB4L7mroo+TvFjPQAAAAAAAAAA5jWVPjcPDT8OPE2+YXbivqN35T4/XiW9AAAAAAAAAAAaN3M9j7ZiupK8tTvyqc83/RdCu3Z/1rUAAIA/AACAPzPTuru4puq5/vetOglgMjUOvas6mhvIuQAAgD8AAIA/mrmrO/YsbbqyLWm8GEuBNcALiDrNiua0AACAPwAAgD+AWiY9SvsZPnomS73E806+HsrVPALOmb0AAAAAAAAAAABORz1cC1i6piCku3bgpTcU5BI6q0R/NgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITRHg9C58SkCUhpRSlIwBbJRLrYwBdJRHQIhztBfKISF1fZQoaAZoCWgPQwhUOe0puVZhQJSGlFKUaBVN6ANoFkdAiHx4lpoK2XV9lChoBmgJaA9DCIp0P6egWWJAlIaUUpRoFU3oA2gWR0CJEDVz6rNodX2UKGgGaAloD0MIr9FyoAeDYUCUhpRSlGgVTegDaBZHQIkUheqrBCV1fZQoaAZoCWgPQwhVL7/TZDlfQJSGlFKUaBVN6ANoFkdAiSjav7m+03V9lChoBmgJaA9DCCCySBNvxWFAlIaUUpRoFU3oA2gWR0CJKMIAwPAgdX2UKGgGaAloD0MIeT9uv3yDZUCUhpRSlGgVTegDaBZHQIk959Cu2Z11fZQoaAZoCWgPQwjlt+hkKeNiQJSGlFKUaBVN6ANoFkdAiUX8ophF3XV9lChoBmgJaA9DCIQroFDPKGFAlIaUUpRoFU3oA2gWR0CJTzXCCSRsdX2UKGgGaAloD0MIEDtT6LwEZkCUhpRSlGgVTegDaBZHQIlZaEtdzGR1fZQoaAZoCWgPQwhBCwkYXVZjQJSGlFKUaBVN6ANoFkdAiWZuRs/IKnV9lChoBmgJaA9DCLRYiuQr0VtAlIaUUpRoFU3oA2gWR0CJciMBp5/tdX2UKGgGaAloD0MIjiEAOPYvXkCUhpRSlGgVTegDaBZHQIl/g5YHPeJ1fZQoaAZoCWgPQwiF7LyNzU1kQJSGlFKUaBVN6ANoFkdAiYCRSHdoFnV9lChoBmgJaA9DCMNGWb8ZqGZAlIaUUpRoFU3oA2gWR0CJhSNsnAqNdX2UKGgGaAloD0MIlSu8y8VPYkCUhpRSlGgVTegDaBZHQImGZAhStNl1fZQoaAZoCWgPQwjXT/9Z81dkQJSGlFKUaBVN6ANoFkdAiYvDRD1GsnV9lChoBmgJaA9DCK/t7ZbkVGVAlIaUUpRoFU3oA2gWR0CJlNWattALdX2UKGgGaAloD0MI8WWiCCmDZkCUhpRSlGgVTegDaBZHQIoptGLDQ7d1fZQoaAZoCWgPQwg5fNKJhB5jQJSGlFKUaBVN6ANoFkdAii4GKyfL93V9lChoBmgJaA9DCHeGqS11CGRAlIaUUpRoFU3oA2gWR0CKQ9FlTWGzdX2UKGgGaAloD0MIrWnecQqLYUCUhpRSlGgVTegDaBZHQIpDu5Yoy9F1fZQoaAZoCWgPQwiZDp2edzleQJSGlFKUaBVN6ANoFkdAill7gsK9f3V9lChoBmgJaA9DCMKjjSPW92JAlIaUUpRoFU3oA2gWR0CKYgYCQtBfdX2UKGgGaAloD0MIkdJsHod0XkCUhpRSlGgVTegDaBZHQIprYqLCN0h1fZQoaAZoCWgPQwgkC5jArQlfQJSGlFKUaBVN6ANoFkdAinW6Mir1d3V9lChoBmgJaA9DCMmutIxUxGFAlIaUUpRoFU3oA2gWR0CKgzSqlxffdX2UKGgGaAloD0MIQQ3fwrppYUCUhpRSlGgVTegDaBZHQIqOwNqgyuZ1fZQoaAZoCWgPQwgknBa8aC5nQJSGlFKUaBVN6ANoFkdAiprvDP4VRHV9lChoBmgJaA9DCIEjgQabSmZAlIaUUpRoFU3oA2gWR0CKm+jRlYlqdX2UKGgGaAloD0MIrvVFQlvgYECUhpRSlGgVTegDaBZHQIqgK6reZXx1fZQoaAZoCWgPQwivX7AbtuxgQJSGlFKUaBVN6ANoFkdAiqFeueSSvHV9lChoBmgJaA9DCHe9NEUAaWZAlIaUUpRoFU3oA2gWR0CKpn/XoTwldX2UKGgGaAloD0MI4e8Xs6ViZECUhpRSlGgVTegDaBZHQIquU/2TPjZ1fZQoaAZoCWgPQwgsg2qDE2llQJSGlFKUaBVN6ANoFkdAi0CoUahpQHV9lChoBmgJaA9DCBcNGY/S92dAlIaUUpRoFU3oA2gWR0CLRFVWCEpRdX2UKGgGaAloD0MIv36IDZZwZUCUhpRSlGgVTegDaBZHQItVt8/lhgF1fZQoaAZoCWgPQwisOUAwR/1kQJSGlFKUaBVN6ANoFkdAi1WXlbNbDHV9lChoBmgJaA9DCEp5rYRumWFAlIaUUpRoFU3oA2gWR0CLaVXtBv74dX2UKGgGaAloD0MIVBnG3SAsZ0CUhpRSlGgVTegDaBZHQItw7/6wdKd1fZQoaAZoCWgPQwj+mNamsfhnQJSGlFKUaBVN6ANoFkdAi3nJFb3XZ3V9lChoBmgJaA9DCEYjn1e8fWRAlIaUUpRoFU3oA2gWR0CLg6kuYhMbdX2UKGgGaAloD0MIrAFKQ43BX0CUhpRSlGgVTegDaBZHQIuQiQDFId51fZQoaAZoCWgPQwj27o/3Kj5mQJSGlFKUaBVN6ANoFkdAi5uQwsXiznV9lChoBmgJaA9DCE5Bfjby6WZAlIaUUpRoFU3oA2gWR0CLqFK28Zk1dX2UKGgGaAloD0MI6IU7F0YnY0CUhpRSlGgVTegDaBZHQIupVg4Otnx1fZQoaAZoCWgPQwieflAXKXJgQJSGlFKUaBVN6ANoFkdAi6323rleW3V9lChoBmgJaA9DCCgOoN936mFAlIaUUpRoFU3oA2gWR0CLryjrRjSYdX2UKGgGaAloD0MIXDrmPGPoYECUhpRSlGgVTegDaBZHQIu0l30PH1h1fZQoaAZoCWgPQwhkWpvGdr1jQJSGlFKUaBVN6ANoFkdAi71NUwSJ0nV9lChoBmgJaA9DCDF5A8x84WNAlIaUUpRoFU3oA2gWR0CLyXe3QUpNdX2UKGgGaAloD0MIXqCkwAJraECUhpRSlGgVTegDaBZHQIxUIMx46fd1fZQoaAZoCWgPQwh55uWwe9piQJSGlFKUaBVN6ANoFkdAjGePBrN4aHV9lChoBmgJaA9DCDDysiaW4mJAlIaUUpRoFU3oA2gWR0CMZ3QvYe1bdX2UKGgGaAloD0MISnoYWp1bYECUhpRSlGgVTegDaBZHQIx8SvC/Gl11fZQoaAZoCWgPQwikp8ghYpdjQJSGlFKUaBVN6ANoFkdAjIQpSiudPXV9lChoBmgJaA9DCIrpQqx+tGdAlIaUUpRoFU3oA2gWR0CMjNvXK8tgdX2UKGgGaAloD0MIbJOKxlqMYUCUhpRSlGgVTegDaBZHQIyWWTvAoG91fZQoaAZoCWgPQwgAGxAhrjlfQJSGlFKUaBVN6ANoFkdAjKKtAs052nV9lChoBmgJaA9DCAWnPpA8d2ZAlIaUUpRoFU3oA2gWR0CMres052hadX2UKGgGaAloD0MIwf2ABwbgZUCUhpRSlGgVTegDaBZHQIy6VJlJ6IF1fZQoaAZoCWgPQwi6u86GfHdkQJSGlFKUaBVN6ANoFkdAjLtTXz19OXV9lChoBmgJaA9DCF1r71NVz2VAlIaUUpRoFU3oA2gWR0CMv5t8/lhgdX2UKGgGaAloD0MIDfyohn21ZUCUhpRSlGgVTegDaBZHQIzA0DB/I811fZQoaAZoCWgPQwglJNI2/rJiQJSGlFKUaBVN6ANoFkdAjMYIbOu7pXV9lChoBmgJaA9DCPIiE/DrLWhAlIaUUpRoFU3oA2gWR0CMzluGbkOqdX2UKGgGaAloD0MINC4cCEnEZUCUhpRSlGgVTegDaBZHQIzaJcPe54J1fZQoaAZoCWgPQwgCKEaWTEBiQJSGlFKUaBVN6ANoFkdAjWThfa6BiHV9lChoBmgJaA9DCHYZ/tMNNWdAlIaUUpRoFU3oA2gWR0CNd8K4QSSNdX2UKGgGaAloD0MIJQaBlcMQZ0CUhpRSlGgVTegDaBZHQI13qAlOXVt1fZQoaAZoCWgPQwjL12X4TyNjQJSGlFKUaBVN6ANoFkdAjYxHWrfce3V9lChoBmgJaA9DCA/W/zlM7WRAlIaUUpRoFU3oA2gWR0CNlAsA/9pAdX2UKGgGaAloD0MIc58cBYjDXUCUhpRSlGgVTegDaBZHQI2cnPmgam51fZQoaAZoCWgPQwi3Yn/ZPbdjQJSGlFKUaBVN6ANoFkdAjaYYWDYh+3V9lChoBmgJaA9DCF+VC5V/Dm5AlIaUUpRoFU12A2gWR0CNrTljEvTPdX2UKGgGaAloD0MIqcE0DJ98ZECUhpRSlGgVTegDaBZHQI2xvxz7uUl1fZQoaAZoCWgPQwh1AMRdvVVgQJSGlFKUaBVN6ANoFkdAjcYCH6/IsHV9lChoBmgJaA9DCB/0bFb9pmFAlIaUUpRoFU3oA2gWR0CNxt51Ng0CdX2UKGgGaAloD0MIoIfaNowxX0CUhpRSlGgVTegDaBZHQI3Kv+6y0KJ1fZQoaAZoCWgPQwhfJLTlXIpnQJSGlFKUaBVN6ANoFkdAjcvWBas6rHV9lChoBmgJaA9DCM9lahK8/15AlIaUUpRoFU3oA2gWR0CN0F6pHZsbdX2UKGgGaAloD0MIcOoDyTslY0CUhpRSlGgVTegDaBZHQI3XsbiqABl1fZQoaAZoCWgPQwiSWFLuvvBiQJSGlFKUaBVN6ANoFkdAjeGEvboKUnV9lChoBmgJaA9DCCo3UUtzbGRAlIaUUpRoFU3oA2gWR0CN5Pu2qkuZdX2UKGgGaAloD0MIXWvvU1WmZECUhpRSlGgVTegDaBZHQI58kcp9ZzR1fZQoaAZoCWgPQwjwwWuXNlRlQJSGlFKUaBVN6ANoFkdAjnxujqOcUnV9lChoBmgJaA9DCPG76ZadzWJAlIaUUpRoFU3oA2gWR0COjmxN7BwddX2UKGgGaAloD0MIxa2CGOiEYECUhpRSlGgVTegDaBZHQI6VltO2y9p1fZQoaAZoCWgPQwhJufscn1dnQJSGlFKUaBVN6ANoFkdAjp2z/ACW/3V9lChoBmgJaA9DCA4V4/zNC2ZAlIaUUpRoFU3oA2gWR0COpmvwEyLydX2UKGgGaAloD0MIQYLixxiDZkCUhpRSlGgVTegDaBZHQI6tTbi6xxF1fZQoaAZoCWgPQwgj3c8pSHtlQJSGlFKUaBVN6ANoFkdAjrHYG2TgVHV9lChoBmgJaA9DCCcSTDWzFWRAlIaUUpRoFU3oA2gWR0COx1QTmGM5dX2UKGgGaAloD0MIOzdtxmniZkCUhpRSlGgVTegDaBZHQI7IZP69CeF1fZQoaAZoCWgPQwhAv+/fPE1nQJSGlFKUaBVN6ANoFkdAjsybW3BpH3V9lChoBmgJaA9DCN8xPPazrWJAlIaUUpRoFU3oA2gWR0COzbZmI0qIdX2UKGgGaAloD0MI3J21267+YUCUhpRSlGgVTegDaBZHQI7SjbL2YfJ1fZQoaAZoCWgPQwi05zI1iRVkQJSGlFKUaBVN6ANoFkdAjtpofSx7iXV9lChoBmgJaA9DCIyFIXL6Q2NAlIaUUpRoFU3oA2gWR0CO5TY9Pk7wdX2UKGgGaAloD0MIxm6fVWbfYkCUhpRSlGgVTegDaBZHQI7ox06o2n91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f975413c3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f975413c440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f975413c4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f975413c560>", "_build": "<function ActorCriticPolicy._build at 0x7f975413c5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f975413c680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f975413c710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f975413c7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f975413c830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f975413c8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f975413c950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f975418d4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 1007616, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652130184.613584, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAJppjbxSwOC5EhxFuz1sijlwnD47Xui+OQAAgD8AAIA/pvKkvu1Jmj86zAm/rmIOv7Jnv743LMW9AAAAAAAAAAAdvVe+uMP8PRgytD4EWpC+O5INvY/hFT4AAAAAAAAAAFpb770/EIM+VdK/PKOAeb6+Q0e96HqQPAAAAAAAAAAAZhCCvYV9rLu+6m+8jGiRPMyaBT0S3na9AAAAAAAAgD/mzo29uUjhPiL4Vb7jwN++mtdYvWymprwAAAAAAAAAAFoi3L39eRk81lGKvo5SdL7MYFq+dDzDPwAAgD8AAAAA0NBpvsOZU7q7xSw4U0Z5syA4TruiaES3AACAPwAAgD+AE6m9w8FYur6coLppMZm1NwA6OnowvTkAAIA/AACAP95pqr59Noy9axERuu7RBLmwlLQ+1hOROQAAgD8AAIA/LckPvtF9oj0qkW26zmc/vv/Kyr0pSji8AAAAAAAAAADtaF6+o2TlPpOVnbybVgm/d/83vgIjNTwAAAAAAAAAAOJ0Cr9baUq+25vsOrVtGTod9eQ+rYZUugAAgD8AAIA/JjDfPQcruD5K4ga/LKAAv9YGZbsmRtK+AAAAAAAAAADmU/89QKmdPhPVvr5Cyf6+DLuuPRqrar4AAAAAAAAAAEAQZj7TDms/7kWQPrLjG79o/8s+eLzHPQAAAAAAAAAAAD7xvIi86z0jvWI+49F9vuhnJD6AfFq6AAAAAAAAAACaBYE7s9xiPw9rir2OVCa/x/7bPUh59zwAAAAAAAAAAM39prwOYrM/vK8svx+KKr5ro488nvaTPQAAAAAAAAAAZmoQvLdssz+qUeG+EvJdvpmdBzx+l389AAAAAAAAAABzsuC9TjG4vFaFRL3t4mw9fQ9GvDYLkTwAAIA/AAAAADONyrwpSH26raaZOtExP7aAxFQ7pTUxtQAAgD8AAIA/JqHZvQlWXj3wNKI+xy1Mvnemwj2oQoE9AAAAAAAAAADNJA2+BSHLu9gTh72fUeC70w8YPVowtzwAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXFSLiGJxbkCUhpRSlIwBbJRNEwGMAXSUR0CgMp45ksjFdX2UKGgGaAloD0MIHcwmwDAZbkCUhpRSlGgVS/FoFkdAoDKz1qWTo3V9lChoBmgJaA9DCMWqQZhbOHFAlIaUUpRoFU0WAWgWR0CgMuMZ5zHTdX2UKGgGaAloD0MI/MbXntk/c0CUhpRSlGgVTX8BaBZHQKAzNMnqmj11fZQoaAZoCWgPQwioctpTcqlpQJSGlFKUaBVNEgJoFkdAoDM/mYBvJnV9lChoBmgJaA9DCE6aBkVzcHBAlIaUUpRoFU0HAWgWR0CgM3IrvsqsdX2UKGgGaAloD0MIqd2vArx1ckCUhpRSlGgVTb8CaBZHQKAzmUgSvkl1fZQoaAZoCWgPQwiu9NpsLD1xQJSGlFKUaBVL9mgWR0CgM6+QEIPcdX2UKGgGaAloD0MIj4r/OyIXc0CUhpRSlGgVTWEBaBZHQKAz0qS5iEx1fZQoaAZoCWgPQwh+xoUDISFjQJSGlFKUaBVN6ANoFkdAoDPkkdFOPHV9lChoBmgJaA9DCIxLVdrir25AlIaUUpRoFUv2aBZHQKA0E49X9zh1fZQoaAZoCWgPQwioABjPIAByQJSGlFKUaBVNBwFoFkdAoDQnIU8FIXV9lChoBmgJaA9DCDCgF+5c621AlIaUUpRoFU1VAWgWR0CgeVKhtcfOdX2UKGgGaAloD0MIozodyHo5cECUhpRSlGgVTTkBaBZHQKB5ZFI/Z/V1fZQoaAZoCWgPQwjzkv/J310MQJSGlFKUaBVLnmgWR0CgeZsGxD9gdX2UKGgGaAloD0MIoyJOJ9m/UUCUhpRSlGgVS6loFkdAoHmxyjpLVXV9lChoBmgJaA9DCI9uhEXFfG9AlIaUUpRoFU1hAWgWR0CgeejXnQpndX2UKGgGaAloD0MI2zS210K9cECUhpRSlGgVS9JoFkdAoHnxo4+8oXV9lChoBmgJaA9DCCO6Z12jZnNAlIaUUpRoFUvyaBZHQKB6OZAprk91fZQoaAZoCWgPQwg42QbuAC1xQJSGlFKUaBVL7mgWR0Cgesuh0yP/dX2UKGgGaAloD0MIq8spAfFrckCUhpRSlGgVS9BoFkdAoHrnZmI0qHV9lChoBmgJaA9DCFpJK74hxHFAlIaUUpRoFU0rAWgWR0Cge1maQV9GdX2UKGgGaAloD0MIF0hQ/JiacECUhpRSlGgVS79oFkdAoHtZY9xIa3V9lChoBmgJaA9DCBw/VBox6W5AlIaUUpRoFU0zAWgWR0Cge66jWTX8dX2UKGgGaAloD0MIaVa2D7l0cECUhpRSlGgVS8poFkdAoHu4O8TSLXV9lChoBmgJaA9DCGFtjJ1wCG9AlIaUUpRoFUvfaBZHQKB73OE/Spl1fZQoaAZoCWgPQwjG3LWEvERyQJSGlFKUaBVNBAFoFkdAoHwRDXvphXV9lChoBmgJaA9DCF9BmrHou3FAlIaUUpRoFUvTaBZHQKB8R4C6pYN1fZQoaAZoCWgPQwgD6WLTSpBwQJSGlFKUaBVNKQFoFkdAoHxO98JD3XV9lChoBmgJaA9DCNiDSfExWHJAlIaUUpRoFUvqaBZHQKB8YwQlKK51fZQoaAZoCWgPQwi7XwX47hV0QJSGlFKUaBVL6WgWR0CgfHFERaoudX2UKGgGaAloD0MIAKsjR/qacUCUhpRSlGgVS+RoFkdAoHx72HtWuHV9lChoBmgJaA9DCF9iLNOvynFAlIaUUpRoFU0kAWgWR0CgfIdc0LtvdX2UKGgGaAloD0MI2spL/qekb0CUhpRSlGgVTSQBaBZHQKB8tLL6k691fZQoaAZoCWgPQwhClC9oIf1yQJSGlFKUaBVL82gWR0CgfPtXYDkmdX2UKGgGaAloD0MI/tR46aZscECUhpRSlGgVS/FoFkdAoH0t1p0wJ3V9lChoBmgJaA9DCHcxzXQviW5AlIaUUpRoFUvNaBZHQKB9QIEbHZN1fZQoaAZoCWgPQwgf2Vw1z51FQJSGlFKUaBVLtGgWR0CgfcM+eOGTdX2UKGgGaAloD0MIDykGSLSnckCUhpRSlGgVTRABaBZHQKB9wYYzi0h1fZQoaAZoCWgPQwjk+KHSyEFyQJSGlFKUaBVNIAFoFkdAoH5DPnjhk3V9lChoBmgJaA9DCF4u4jsxanJAlIaUUpRoFU0MAWgWR0Cgfqe4smOVdX2UKGgGaAloD0MIUBcplMVNcECUhpRSlGgVTSMBaBZHQKB+rmmLtNV1fZQoaAZoCWgPQwjdCmE1lhVvQJSGlFKUaBVL+GgWR0CgfxQ0waisdX2UKGgGaAloD0MI/686cqQTF0CUhpRSlGgVS3xoFkdAoH9vrleWwHV9lChoBmgJaA9DCGsRUUxeWXFAlIaUUpRoFUv2aBZHQKB/iRK6Fuh1fZQoaAZoCWgPQwilpIehVchwQJSGlFKUaBVL5WgWR0Cgf5RJul41dX2UKGgGaAloD0MI1Jl7SPi2NkCUhpRSlGgVS5loFkdAoH+wpKBd2XV9lChoBmgJaA9DCLyUumQcTm5AlIaUUpRoFUvjaBZHQKB/vxxT8511fZQoaAZoCWgPQwhVFK+ytmpyQJSGlFKUaBVL9WgWR0Cgf+tLDhtMdX2UKGgGaAloD0MI4ugq3d1QbECUhpRSlGgVS85oFkdAoH/vFHavinV9lChoBmgJaA9DCCv7rgj+8mhAlIaUUpRoFU2hAWgWR0Cgf/6GpMpPdX2UKGgGaAloD0MIlGsKZDYDcUCUhpRSlGgVTRwBaBZHQKCAPRP420l1fZQoaAZoCWgPQwhIaww6YZRyQJSGlFKUaBVL5GgWR0CggGJC0F8pdX2UKGgGaAloD0MIvVXXoZoab0CUhpRSlGgVS+5oFkdAoIBiOxSpBHV9lChoBmgJaA9DCNEGYAPij3BAlIaUUpRoFUvpaBZHQKCAkMTewcJ1fZQoaAZoCWgPQwh+qDRiZitwQJSGlFKUaBVL+WgWR0CggJmBnSOSdX2UKGgGaAloD0MIE36pn7cTbkCUhpRSlGgVS+toFkdAoIFag7HQyHV9lChoBmgJaA9DCJ4kXTN52G9AlIaUUpRoFU0SAWgWR0CggYNXYDkmdX2UKGgGaAloD0MIbJc2HBaSbUCUhpRSlGgVS9xoFkdAoIG24iHIqHV9lChoBmgJaA9DCPT8aaO68HFAlIaUUpRoFU0uAWgWR0CggbxL0z0pdX2UKGgGaAloD0MIE2OZfkkfc0CUhpRSlGgVS/FoFkdAoIKjJlrdnHV9lChoBmgJaA9DCKsgBrq2jHJAlIaUUpRoFU16AWgWR0CggqhMi8nNdX2UKGgGaAloD0MISE+RQ8SDckCUhpRSlGgVTSQBaBZHQKCDCPdVNpN1fZQoaAZoCWgPQwgjaw2lNo5yQJSGlFKUaBVL2WgWR0Cgg3nsC1Z1dX2UKGgGaAloD0MIysLX13rxcECUhpRSlGgVTRIBaBZHQKCDsNsFdLR1fZQoaAZoCWgPQwhnutdJ/YlwQJSGlFKUaBVLz2gWR0Cgg8D5KvmpdX2UKGgGaAloD0MIfZQRFwBxckCUhpRSlGgVS/hoFkdAoIQcxyn1nXV9lChoBmgJaA9DCPlM9s+TH3FAlIaUUpRoFUvzaBZHQKCEMHck+ot1fZQoaAZoCWgPQwhxWBr4UQxxQJSGlFKUaBVL+WgWR0CghD9b5dnkdX2UKGgGaAloD0MI5IQJo5lucECUhpRSlGgVTQ8BaBZHQKCEasV+I/J1fZQoaAZoCWgPQwiARX79kBFyQJSGlFKUaBVL8mgWR0CghNNjkMkQdX2UKGgGaAloD0MIzH7d6c6fcUCUhpRSlGgVTRMBaBZHQKCE9JLdvbZ1fZQoaAZoCWgPQwgCRSxiGFBzQJSGlFKUaBVNCQFoFkdAoIUaBiCrcXV9lChoBmgJaA9DCDQw8rIm6EFAlIaUUpRoFUuDaBZHQKCFHytmthd1fZQoaAZoCWgPQwhMxca8DhFsQJSGlFKUaBVNXwFoFkdAoIUoRVZLZnV9lChoBmgJaA9DCGpsrwV9gnFAlIaUUpRoFUv8aBZHQKCFPbM5fdB1fZQoaAZoCWgPQwgzMshdBJ9xQJSGlFKUaBVLuWgWR0Cghh4IKMNudX2UKGgGaAloD0MIrMjogGSLckCUhpRSlGgVTUgBaBZHQKCGpYZEUj91fZQoaAZoCWgPQwj4pumzQ31yQJSGlFKUaBVL8GgWR0Cgh7WRJVbSdX2UKGgGaAloD0MIVU0QdV9DckCUhpRSlGgVTYUBaBZHQKCHu0G/vfF1fZQoaAZoCWgPQwgkfsUa7qtyQJSGlFKUaBVNRgFoFkdAoIfFZq20A3V9lChoBmgJaA9DCMWrrG1KTHNAlIaUUpRoFU3OAWgWR0Cgh9CIk7fYdX2UKGgGaAloD0MIbO7of7mLcECUhpRSlGgVS+VoFkdAoIf1Sl3yJHV9lChoBmgJaA9DCFpo5zQLPW5AlIaUUpRoFU1OAWgWR0CgiCgxzq8ldX2UKGgGaAloD0MINZiG4WPncECUhpRSlGgVTbcBaBZHQKCIPNsWO6x1fZQoaAZoCWgPQwjdDDfg895uQJSGlFKUaBVL5WgWR0CgiJl+NLlFdX2UKGgGaAloD0MI0UAsm7kebUCUhpRSlGgVS+5oFkdAoIjl6cAimnV9lChoBmgJaA9DCH3Nctlo03JAlIaUUpRoFUvFaBZHQKCJA0qH4491fZQoaAZoCWgPQwjMlqyKMAByQJSGlFKUaBVL/GgWR0CgiR1Vo6CEdX2UKGgGaAloD0MIHY8ZqEzDc0CUhpRSlGgVS+VoFkdAoIl6HVPN3XV9lChoBmgJaA9DCK36XG0FDHBAlIaUUpRoFU0QAWgWR0CgicOKfnOjdX2UKGgGaAloD0MIAOSECSMOcUCUhpRSlGgVTTkBaBZHQKCJ4vtdAxB1fZQoaAZoCWgPQwgrFyr/mpByQJSGlFKUaBVL72gWR0CgieeE7GNrdX2UKGgGaAloD0MI3dJqSJwwckCUhpRSlGgVTUcBaBZHQKCKFeJHiFV1fZQoaAZoCWgPQwiSyhRzkBVyQJSGlFKUaBVNAgFoFkdAoIoyHO8kEHV9lChoBmgJaA9DCNBGrpuS7HFAlIaUUpRoFU0LAWgWR0CgioAJswcpdX2UKGgGaAloD0MIfpBlwQS4cECUhpRSlGgVTTQBaBZHQKCK121UlzF1fZQoaAZoCWgPQwg7inPUUbhuQJSGlFKUaBVL7WgWR0CgitZdWyTqdX2UKGgGaAloD0MID0Ork7OQakCUhpRSlGgVTRsCaBZHQKCLqKgIyCZ1fZQoaAZoCWgPQwg75Ga4AV89QJSGlFKUaBVLumgWR0Cgi62RA8jidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 820, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-linker-1.2
ADDED
Binary file (144 kB). View file
|
|
ppo-LunarLander-v2-linker-v1_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e9cf61a17668263a878cafc2e42a0501917f9fb4b1f0ae9f493a444b82795d
|
3 |
+
size 144392
|
ppo-LunarLander-v2-linker-v1_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-linker-v1_2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f975413c3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f975413c440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f975413c4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f975413c560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f975413c5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f975413c680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f975413c710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f975413c7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f975413c830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f975413c8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f975413c950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f975418d4b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 24,
|
45 |
+
"num_timesteps": 1007616,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652130184.613584,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAJppjbxSwOC5EhxFuz1sijlwnD47Xui+OQAAgD8AAIA/pvKkvu1Jmj86zAm/rmIOv7Jnv743LMW9AAAAAAAAAAAdvVe+uMP8PRgytD4EWpC+O5INvY/hFT4AAAAAAAAAAFpb770/EIM+VdK/PKOAeb6+Q0e96HqQPAAAAAAAAAAAZhCCvYV9rLu+6m+8jGiRPMyaBT0S3na9AAAAAAAAgD/mzo29uUjhPiL4Vb7jwN++mtdYvWymprwAAAAAAAAAAFoi3L39eRk81lGKvo5SdL7MYFq+dDzDPwAAgD8AAAAA0NBpvsOZU7q7xSw4U0Z5syA4TruiaES3AACAPwAAgD+AE6m9w8FYur6coLppMZm1NwA6OnowvTkAAIA/AACAP95pqr59Noy9axERuu7RBLmwlLQ+1hOROQAAgD8AAIA/LckPvtF9oj0qkW26zmc/vv/Kyr0pSji8AAAAAAAAAADtaF6+o2TlPpOVnbybVgm/d/83vgIjNTwAAAAAAAAAAOJ0Cr9baUq+25vsOrVtGTod9eQ+rYZUugAAgD8AAIA/JjDfPQcruD5K4ga/LKAAv9YGZbsmRtK+AAAAAAAAAADmU/89QKmdPhPVvr5Cyf6+DLuuPRqrar4AAAAAAAAAAEAQZj7TDms/7kWQPrLjG79o/8s+eLzHPQAAAAAAAAAAAD7xvIi86z0jvWI+49F9vuhnJD6AfFq6AAAAAAAAAACaBYE7s9xiPw9rir2OVCa/x/7bPUh59zwAAAAAAAAAAM39prwOYrM/vK8svx+KKr5ro488nvaTPQAAAAAAAAAAZmoQvLdssz+qUeG+EvJdvpmdBzx+l389AAAAAAAAAABzsuC9TjG4vFaFRL3t4mw9fQ9GvDYLkTwAAIA/AAAAADONyrwpSH26raaZOtExP7aAxFQ7pTUxtQAAgD8AAIA/JqHZvQlWXj3wNKI+xy1Mvnemwj2oQoE9AAAAAAAAAADNJA2+BSHLu9gTh72fUeC70w8YPVowtzwAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVSxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXFSLiGJxbkCUhpRSlIwBbJRNEwGMAXSUR0CgMp45ksjFdX2UKGgGaAloD0MIHcwmwDAZbkCUhpRSlGgVS/FoFkdAoDKz1qWTo3V9lChoBmgJaA9DCMWqQZhbOHFAlIaUUpRoFU0WAWgWR0CgMuMZ5zHTdX2UKGgGaAloD0MI/MbXntk/c0CUhpRSlGgVTX8BaBZHQKAzNMnqmj11fZQoaAZoCWgPQwioctpTcqlpQJSGlFKUaBVNEgJoFkdAoDM/mYBvJnV9lChoBmgJaA9DCE6aBkVzcHBAlIaUUpRoFU0HAWgWR0CgM3IrvsqsdX2UKGgGaAloD0MIqd2vArx1ckCUhpRSlGgVTb8CaBZHQKAzmUgSvkl1fZQoaAZoCWgPQwiu9NpsLD1xQJSGlFKUaBVL9mgWR0CgM6+QEIPcdX2UKGgGaAloD0MIj4r/OyIXc0CUhpRSlGgVTWEBaBZHQKAz0qS5iEx1fZQoaAZoCWgPQwh+xoUDISFjQJSGlFKUaBVN6ANoFkdAoDPkkdFOPHV9lChoBmgJaA9DCIxLVdrir25AlIaUUpRoFUv2aBZHQKA0E49X9zh1fZQoaAZoCWgPQwioABjPIAByQJSGlFKUaBVNBwFoFkdAoDQnIU8FIXV9lChoBmgJaA9DCDCgF+5c621AlIaUUpRoFU1VAWgWR0CgeVKhtcfOdX2UKGgGaAloD0MIozodyHo5cECUhpRSlGgVTTkBaBZHQKB5ZFI/Z/V1fZQoaAZoCWgPQwjzkv/J310MQJSGlFKUaBVLnmgWR0CgeZsGxD9gdX2UKGgGaAloD0MIoyJOJ9m/UUCUhpRSlGgVS6loFkdAoHmxyjpLVXV9lChoBmgJaA9DCI9uhEXFfG9AlIaUUpRoFU1hAWgWR0CgeejXnQpndX2UKGgGaAloD0MI2zS210K9cECUhpRSlGgVS9JoFkdAoHnxo4+8oXV9lChoBmgJaA9DCCO6Z12jZnNAlIaUUpRoFUvyaBZHQKB6OZAprk91fZQoaAZoCWgPQwg42QbuAC1xQJSGlFKUaBVL7mgWR0Cgesuh0yP/dX2UKGgGaAloD0MIq8spAfFrckCUhpRSlGgVS9BoFkdAoHrnZmI0qHV9lChoBmgJaA9DCFpJK74hxHFAlIaUUpRoFU0rAWgWR0Cge1maQV9GdX2UKGgGaAloD0MIF0hQ/JiacECUhpRSlGgVS79oFkdAoHtZY9xIa3V9lChoBmgJaA9DCBw/VBox6W5AlIaUUpRoFU0zAWgWR0Cge66jWTX8dX2UKGgGaAloD0MIaVa2D7l0cECUhpRSlGgVS8poFkdAoHu4O8TSLXV9lChoBmgJaA9DCGFtjJ1wCG9AlIaUUpRoFUvfaBZHQKB73OE/Spl1fZQoaAZoCWgPQwjG3LWEvERyQJSGlFKUaBVNBAFoFkdAoHwRDXvphXV9lChoBmgJaA9DCF9BmrHou3FAlIaUUpRoFUvTaBZHQKB8R4C6pYN1fZQoaAZoCWgPQwgD6WLTSpBwQJSGlFKUaBVNKQFoFkdAoHxO98JD3XV9lChoBmgJaA9DCNiDSfExWHJAlIaUUpRoFUvqaBZHQKB8YwQlKK51fZQoaAZoCWgPQwi7XwX47hV0QJSGlFKUaBVL6WgWR0CgfHFERaoudX2UKGgGaAloD0MIAKsjR/qacUCUhpRSlGgVS+RoFkdAoHx72HtWuHV9lChoBmgJaA9DCF9iLNOvynFAlIaUUpRoFU0kAWgWR0CgfIdc0LtvdX2UKGgGaAloD0MI2spL/qekb0CUhpRSlGgVTSQBaBZHQKB8tLL6k691fZQoaAZoCWgPQwhClC9oIf1yQJSGlFKUaBVL82gWR0CgfPtXYDkmdX2UKGgGaAloD0MI/tR46aZscECUhpRSlGgVS/FoFkdAoH0t1p0wJ3V9lChoBmgJaA9DCHcxzXQviW5AlIaUUpRoFUvNaBZHQKB9QIEbHZN1fZQoaAZoCWgPQwgf2Vw1z51FQJSGlFKUaBVLtGgWR0CgfcM+eOGTdX2UKGgGaAloD0MIDykGSLSnckCUhpRSlGgVTRABaBZHQKB9wYYzi0h1fZQoaAZoCWgPQwjk+KHSyEFyQJSGlFKUaBVNIAFoFkdAoH5DPnjhk3V9lChoBmgJaA9DCF4u4jsxanJAlIaUUpRoFU0MAWgWR0Cgfqe4smOVdX2UKGgGaAloD0MIUBcplMVNcECUhpRSlGgVTSMBaBZHQKB+rmmLtNV1fZQoaAZoCWgPQwjdCmE1lhVvQJSGlFKUaBVL+GgWR0CgfxQ0waisdX2UKGgGaAloD0MI/686cqQTF0CUhpRSlGgVS3xoFkdAoH9vrleWwHV9lChoBmgJaA9DCGsRUUxeWXFAlIaUUpRoFUv2aBZHQKB/iRK6Fuh1fZQoaAZoCWgPQwilpIehVchwQJSGlFKUaBVL5WgWR0Cgf5RJul41dX2UKGgGaAloD0MI1Jl7SPi2NkCUhpRSlGgVS5loFkdAoH+wpKBd2XV9lChoBmgJaA9DCLyUumQcTm5AlIaUUpRoFUvjaBZHQKB/vxxT8511fZQoaAZoCWgPQwhVFK+ytmpyQJSGlFKUaBVL9WgWR0Cgf+tLDhtMdX2UKGgGaAloD0MI4ugq3d1QbECUhpRSlGgVS85oFkdAoH/vFHavinV9lChoBmgJaA9DCCv7rgj+8mhAlIaUUpRoFU2hAWgWR0Cgf/6GpMpPdX2UKGgGaAloD0MIlGsKZDYDcUCUhpRSlGgVTRwBaBZHQKCAPRP420l1fZQoaAZoCWgPQwhIaww6YZRyQJSGlFKUaBVL5GgWR0CggGJC0F8pdX2UKGgGaAloD0MIvVXXoZoab0CUhpRSlGgVS+5oFkdAoIBiOxSpBHV9lChoBmgJaA9DCNEGYAPij3BAlIaUUpRoFUvpaBZHQKCAkMTewcJ1fZQoaAZoCWgPQwh+qDRiZitwQJSGlFKUaBVL+WgWR0CggJmBnSOSdX2UKGgGaAloD0MIE36pn7cTbkCUhpRSlGgVS+toFkdAoIFag7HQyHV9lChoBmgJaA9DCJ4kXTN52G9AlIaUUpRoFU0SAWgWR0CggYNXYDkmdX2UKGgGaAloD0MIbJc2HBaSbUCUhpRSlGgVS9xoFkdAoIG24iHIqHV9lChoBmgJaA9DCPT8aaO68HFAlIaUUpRoFU0uAWgWR0CggbxL0z0pdX2UKGgGaAloD0MIE2OZfkkfc0CUhpRSlGgVS/FoFkdAoIKjJlrdnHV9lChoBmgJaA9DCKsgBrq2jHJAlIaUUpRoFU16AWgWR0CggqhMi8nNdX2UKGgGaAloD0MISE+RQ8SDckCUhpRSlGgVTSQBaBZHQKCDCPdVNpN1fZQoaAZoCWgPQwgjaw2lNo5yQJSGlFKUaBVL2WgWR0Cgg3nsC1Z1dX2UKGgGaAloD0MIysLX13rxcECUhpRSlGgVTRIBaBZHQKCDsNsFdLR1fZQoaAZoCWgPQwhnutdJ/YlwQJSGlFKUaBVLz2gWR0Cgg8D5KvmpdX2UKGgGaAloD0MIfZQRFwBxckCUhpRSlGgVS/hoFkdAoIQcxyn1nXV9lChoBmgJaA9DCPlM9s+TH3FAlIaUUpRoFUvzaBZHQKCEMHck+ot1fZQoaAZoCWgPQwhxWBr4UQxxQJSGlFKUaBVL+WgWR0CghD9b5dnkdX2UKGgGaAloD0MI5IQJo5lucECUhpRSlGgVTQ8BaBZHQKCEasV+I/J1fZQoaAZoCWgPQwiARX79kBFyQJSGlFKUaBVL8mgWR0CghNNjkMkQdX2UKGgGaAloD0MIzH7d6c6fcUCUhpRSlGgVTRMBaBZHQKCE9JLdvbZ1fZQoaAZoCWgPQwgCRSxiGFBzQJSGlFKUaBVNCQFoFkdAoIUaBiCrcXV9lChoBmgJaA9DCDQw8rIm6EFAlIaUUpRoFUuDaBZHQKCFHytmthd1fZQoaAZoCWgPQwhMxca8DhFsQJSGlFKUaBVNXwFoFkdAoIUoRVZLZnV9lChoBmgJaA9DCGpsrwV9gnFAlIaUUpRoFUv8aBZHQKCFPbM5fdB1fZQoaAZoCWgPQwgzMshdBJ9xQJSGlFKUaBVLuWgWR0Cghh4IKMNudX2UKGgGaAloD0MIrMjogGSLckCUhpRSlGgVTUgBaBZHQKCGpYZEUj91fZQoaAZoCWgPQwj4pumzQ31yQJSGlFKUaBVL8GgWR0Cgh7WRJVbSdX2UKGgGaAloD0MIVU0QdV9DckCUhpRSlGgVTYUBaBZHQKCHu0G/vfF1fZQoaAZoCWgPQwgkfsUa7qtyQJSGlFKUaBVNRgFoFkdAoIfFZq20A3V9lChoBmgJaA9DCMWrrG1KTHNAlIaUUpRoFU3OAWgWR0Cgh9CIk7fYdX2UKGgGaAloD0MIbO7of7mLcECUhpRSlGgVS+VoFkdAoIf1Sl3yJHV9lChoBmgJaA9DCFpo5zQLPW5AlIaUUpRoFU1OAWgWR0CgiCgxzq8ldX2UKGgGaAloD0MINZiG4WPncECUhpRSlGgVTbcBaBZHQKCIPNsWO6x1fZQoaAZoCWgPQwjdDDfg895uQJSGlFKUaBVL5WgWR0CgiJl+NLlFdX2UKGgGaAloD0MI0UAsm7kebUCUhpRSlGgVS+5oFkdAoIjl6cAimnV9lChoBmgJaA9DCH3Nctlo03JAlIaUUpRoFUvFaBZHQKCJA0qH4491fZQoaAZoCWgPQwjMlqyKMAByQJSGlFKUaBVL/GgWR0CgiR1Vo6CEdX2UKGgGaAloD0MIHY8ZqEzDc0CUhpRSlGgVS+VoFkdAoIl6HVPN3XV9lChoBmgJaA9DCK36XG0FDHBAlIaUUpRoFU0QAWgWR0CgicOKfnOjdX2UKGgGaAloD0MIAOSECSMOcUCUhpRSlGgVTTkBaBZHQKCJ4vtdAxB1fZQoaAZoCWgPQwgrFyr/mpByQJSGlFKUaBVL72gWR0CgieeE7GNrdX2UKGgGaAloD0MI3dJqSJwwckCUhpRSlGgVTUcBaBZHQKCKFeJHiFV1fZQoaAZoCWgPQwiSyhRzkBVyQJSGlFKUaBVNAgFoFkdAoIoyHO8kEHV9lChoBmgJaA9DCNBGrpuS7HFAlIaUUpRoFU0LAWgWR0CgioAJswcpdX2UKGgGaAloD0MIfpBlwQS4cECUhpRSlGgVTTQBaBZHQKCK121UlzF1fZQoaAZoCWgPQwg7inPUUbhuQJSGlFKUaBVL7WgWR0CgitZdWyTqdX2UKGgGaAloD0MID0Ork7OQakCUhpRSlGgVTRsCaBZHQKCLqKgIyCZ1fZQoaAZoCWgPQwg75Ga4AV89QJSGlFKUaBVLumgWR0Cgi62RA8jidWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 820,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 20,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-linker-v1_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bda99778de44c33fd136641defc39d221c88c5fb6cdd07be673f3660780eba79
|
3 |
+
size 84893
|
ppo-LunarLander-v2-linker-v1_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad82aa3f7e754afe25aaee91e2aa5b6703d32dc811b9a48e69f86ee6239f0550
|
3 |
+
size 43201
|
ppo-LunarLander-v2-linker-v1_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-linker-v1_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26154e5d22519d53c608fca67dbda6929a0e4e62d6bf23823190e45235bfa4f2
|
3 |
+
size 206832
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.06990819203867, "std_reward": 12.93103281815856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T21:39:09.957297"}
|