clip-japanese-base / modeling_clyp.py
pfzhu's picture
Upload folder using huggingface_hub
071945c verified
# coding=utf-8
# Copyright 2024 LY Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Optional
import torch
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.models.clip.modeling_clip import CLIPOutput
from .configuration_clyp import CLYPConfig, CLYPLossConfig
from .model import InfoNCELoss, create_text_encoder, create_vision_encoder
from .model_rinna import RinnaCLIPModel # noqa
@dataclass
class CLYPOutput(CLIPOutput):
...
class CLYPPreTrainedModel(PreTrainedModel):
config_class = CLYPConfig
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _init_weights(self, module: Any) -> None:
pass
class CLYPModel(CLYPPreTrainedModel):
def __init__(self, config: CLYPConfig):
super().__init__(config)
self.vision_encoder = create_vision_encoder(config.vision_encoder_config)
self.text_encoder = create_text_encoder(config.text_encoder_config)
self.initialize_clip(
learn_temperature=config.learn_temperature,
temperature_init=config.temperature_init,
temperature_min=config.temperature_min,
temperature_max=config.temperature_max,
itc_loss_config=config.itc_loss_config,
)
def initialize_clip(
self,
learn_temperature: Optional[bool] = None,
temperature_init: Optional[float] = None,
temperature_min: Optional[float] = None,
temperature_max: Optional[float] = None,
itc_loss_config: Optional[CLYPLossConfig] = None,
) -> None:
# create contrastive loss function
if itc_loss_config:
raise NotImplementedError
else:
assert learn_temperature is not None
assert temperature_init is not None
self.itc_loss_fn = InfoNCELoss(
learn_temperature=learn_temperature,
init_temperature=temperature_init,
max_temperature=temperature_max,
min_temperature=temperature_min,
gather_with_grad=True,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> tuple | CLYPOutput:
image_feats = self.vision_encoder(pixel_values)
text_feats = self.text_encoder(
{
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
}
)
loss = None
if return_loss:
loss = self.itc_loss_fn(image_feats, text_feats)
image_embeds = F.normalize(image_feats, dim=-1)
text_embeds = F.normalize(text_feats, dim=-1)
sim_i2t = image_embeds @ text_embeds.T
sim_t2i = text_embeds @ image_embeds.T
logits_per_image = sim_i2t / self.itc_loss_fn.temperature
logits_per_text = sim_t2i / self.itc_loss_fn.temperature
if not return_dict:
if loss is None:
return (logits_per_image, logits_per_text, text_embeds, image_embeds)
return (loss, logits_per_image, logits_per_text, text_embeds, image_embeds)
# TODO:
# - Support vision_model_output and text_model_output
# - Improve type: torch.Tensor -> torch.FloatTensor
return CLYPOutput(
loss=loss,
logits_per_image=logits_per_image, # type: ignore
logits_per_text=logits_per_text, # type: ignore
text_embeds=text_embeds, # type: ignore
image_embeds=image_embeds, # type: ignore
)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
text_feats = self.text_encoder(
{
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
}
)
return text_feats
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
image_feats = self.vision_encoder(pixel_values)
return image_feats
if __name__ == "__main__":
model = CLYPModel.from_pretrained(".")