lilianz commited on
Commit
ea88362
·
1 Parent(s): 1dfd22a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 290.42 +/- 13.32
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 288.79 +/- 20.89
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b7f599ea9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b7f599eaa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7f599eab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b7f599eab90>", "_build": "<function ActorCriticPolicy._build at 0x7b7f599eac20>", "forward": "<function ActorCriticPolicy.forward at 0x7b7f599eacb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7f599ead40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7f599eadd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b7f599eae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7f599eaef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b7f599eaf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7f599eb010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b7f599e5b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10092544, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692292796541937971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAC0eKD5nQlQ/IHYnPscVEb84J8g+inD3uwAAAAAAAAAAgN4HPVwDBrxfJLm9TV8yvNIGFj1ozFy+AACAPwAAgD8tAKi+xCwrP030Sz5qAjC/N1fTvoCaUD4AAAAAAAAAAOZ6+b0BYxw+AN+9PsdC976e/ng7gp1tPgAAAAAAAAAARoM4vmk+vT5uyXQ+5f8lvxdnLr5CbUk+AAAAAAAAAABN69C9ktmGP4Oyzr5cNEu/fcpovkPuyr4AAAAAAAAAAKb3gb29wmQ8z4OiPlSZ4b6enQQ+OiPiPQAAAAAAAAAAwKQIvsQIWz+mu3O+vUY4v5nip76mZwe+AAAAAAAAAACAmk09L1inP/D3pD66ZgC/thpJPcv0TT4AAAAAAAAAAM08o7tcAwy6Krr4u20M17L8ToQ6PWT1MgAAgD8AAIA/M0vCO++Itj+8CD4+z9NKPj+a+jeg7Ec9AAAAAAAAAADdTWa+9lbRPnzPij5apRq/A/GEvm1leD4AAAAAAAAAAM1HRz37Rb8/GbDBPgxYJj5XCAY82hT1PQAAAAAAAAAAmhDdPMMRe7oYoY83nadVtghPD7pUEZy2AAAAAAAAAAAN6cU9bWCFPu76/r7HHuC+ch5lvnCma74AAAAAAAAAAJpHNLwfRf25gK0ruDPP8DBBbPG6nnZKNwAAgD8AAIA/TRwbvfqSkT+es8u9J39Mvy64Rr2aHpC9AAAAAAAAAADzYPa9E0kCPwl9uj0h4Ri/L70vvtqfnj0AAAAAAAAAAGaMCbyDzGC8Op1rvfosSD3J5IQ9nu4DPAAAgD8AAIA/APh2vb87Kj5gKmM+gWb2vvZqrL1c/Qo+AAAAAAAAAAAzLTS8sXS3Py7bPb43hco98wFNPDAOKj0AAAAAAAAAAOb3r72PDkq64wU/PkT5ob4B9yI94Eq5PQAAAAAAAIA/ze2yPRTsirrZ+CW5GZ9dthLjmrqGHj04AAAAAAAAgD8za9o7ZPgYPJIBAL52B0S+g4O/vXpltb0AAAAAAAAAADPDAL1PwXy8kfcdPiIJlL0+tV28DxWKvgAAgD8AAIA/ZimvPBTEoLruhGU83vD3OCGQwrpY3+g3AACAPwAAgD/TLH4+/GpRP3VdNj6KQCu/S94LP3F0nLsAAAAAAAAAADMbmL142+c+2k0zPE1OQb+P8+O9sNoSPAAAAAAAAAAAKihhvgkDhT9l99S+xskcvxdz+L7/24m+AAAAAAAAAABtbHs+9xZOP1uhdr0K/TG/6w7kPs5Sg74AAAAAAAAAAFrTe74TGy4/O6/qPQqONL/n7ae+atfgPQAAAAAAAAAAZvgovalpLD89jpy8B9Fjv3ddlL0xe506AAAAAAAAAAAziYK8rCC+P4qEP77Fa4U+q/GhPOVRmT0AAAAAAAAAAGaxAD0zwmw/2pDUPQJ/Tr+0xvA9iqiLuwAAAAAAAAAAAIgyvU/QBT7s5MM97fDjviY9k71eEMI9AAAAAAAAAABmd7m8KYASusXAUbxysIs83TZAO5g3c70AAIA/AACAP5r3WT0y6rI/Q0AMP4bDL77FA0w8nPNIPgAAAAAAAAAARi4ZPp4irD99mvw+d9fvvuTQhz7q66E+AAAAAAAAAABmDtW7n37vu7B1+rpck6k84aQ+PSZZjb0AAIA/AACAP2YKVjx7qpW6BrpoNfdIvC8e4No6BlKjtAAAgD8AAIA/IwNhvkyTsD5Yr+A+hxESv/QHEL7vUoQ+AAAAAAAAAABGI4K+h8MgPzawKT2F+T2/ceHAvk8SGD4AAAAAAAAAAHp6GL6kEhw+aFfDPrLB3r7fQk68mGM5PgAAAAAAAAAAs9ZIPpA5hj9KQcY+ieoMvwen5D42ZGY+AAAAAAAAAADin76+kpx4PxYZDr5LhTG/gRgdvy/3Hz0AAAAAAAAAAKYrAb6P/ho/VdQbO9JuMr+Z4V++UM0QPQAAAAAAAAAAs3dIvfbmbbwT16g9G99cPUMRqb0Lt8w8AACAPwAAgD+mWww+84NdP6ohHT7i7jS/7X60PkUArzoAAAAAAAAAAJq5+7vDRXG6eh5lMZTE8i5lCTa7Cr0PsQAAgD8AAIA/miQnvgz7Gz+HFbi8sEw6v1jdpb6KWAg+AAAAAAAAAACaSlU+EtlPP8ocRTx+nS+/YmHbPmKpFb4AAAAAAAAAADNI8Lz2/i68cNnQPVYKxbzPVJm979mivQAAgD8AAIA/AHUAPWyH+ruvtxO7LWNxPEeYT73hbEw9AACAPwAAgD82TrC+uQsmPzG1ID4Oeyu/yfQDv44gST4AAAAAAAAAAI2xmD1ROpc/Eh1aPmsuLL+79C0+MpooPgAAAAAAAAAAAPS/vD3iPrtNhXU9+zqSPHohWbxYfXs9AACAPwAAgD/m9o69D1dsvEl3iz6jOAa+YwTCvcMi6r4AAIA/AACAP2Y6Sz5njeA+7uTkvjbG5b70CYc9GtCwvgAAAAAAAAAAgEkbvcjyrjv8B7c+0wRQvqE3Gz7y+XW/AAAAAAAAgD+aRq+8XKs8uthFcjf+/3syF6NoutnBj7YAAIA/AACAP5qtPDy0HpG8IjAePnJDjD3p1nu8kImUvAAAgD8AAIA/mp0uvFzoPTuYHmU9fSySvnFt5DsjwBu7AAAAAAAAAABuHpS+BCOiP8zSCb9BqRO/46Hwvl/djb4AAAAAAAAAADND/7x2sjG8a1/gPabEozw30T2971upuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJV1vQ4S6GMAWyUS7iMAXSUR0DD+O9YB/7SdX2UKGgGR0Bwav4ZdfLLaAdLrmgIR0DD+P1EXtSidX2UKGgGR0ByMq4rjHXFaAdLu2gIR0DD+QunuRcNdX2UKGgGR0BxMI5PuXu3aAdLmWgIR0DD+RAFLWZrdX2UKGgGR0Byv69alk6LaAdLxWgIR0DD+RY1rIo3dX2UKGgGR0Bywntu1ndwaAdLn2gIR0DD+RltEXtTdX2UKGgGR0ByP1oXbdrPaAdLk2gIR0DD+Sx8KG+LdX2UKGgGR0BxTxl18stkaAdLtmgIR0DD+SfcL0BfdX2UKGgGR0ByWtiNKh+OaAdLy2gIR0DD+TtnEl3RdX2UKGgGR0ByLfGYKIBSaAdLuWgIR0DD+T7Kkl/pdX2UKGgGR0BzBDWd3B55aAdLqWgIR0DD+TyZ4Oc2dX2UKGgGR0Bvr68e0XxfaAdLo2gIR0DD+T8PtlZpdX2UKGgGR0Bxj3pSrHU+aAdLsGgIR0DD+URuTA32dX2UKGgGR0BwajLxI8QqaAdLuWgIR0DD+UznLaEjdX2UKGgGR0BwuqOcUdq+aAdLtGgIR0DD+VHbO/tZdX2UKGgGR0By6ugRK6FuaAdN/gFoCEdAw/lQ4axX4nV9lChoBkdAcQnLCemNzmgHS5ZoCEdAw/lRyyUs4HV9lChoBkdAcIY8m8dxQ2gHS69oCEdAw/lRXBguy3V9lChoBkdAce6ymQ8wH2gHS8BoCEdAw/lSvpQk5nV9lChoBkdAcomtu1ndwmgHS75oCEdAw/lc2Zy+6HV9lChoBkdAcVBV3EAHV2gHS6toCEdAw/lhkkrwv3V9lChoBkdAcU4aV2Rq5GgHS6JoCEdAw/lpAeJYT3V9lChoBkdAcpEHTqjaf2gHS99oCEdAw/l8SOinHnV9lChoBkdAcqnblA/s3WgHS8doCEdAw/mJG4qgAnV9lChoBkdAcxAqnFYMfGgHS8FoCEdAw/mFjMmnfnV9lChoBkdAcYoQ66reZWgHS8doCEdAw/mEokzGgnV9lChoBkdAcxwT4cm0FGgHS9RoCEdAw/mTBP9DQnV9lChoBkdAcKx7p3X7L2gHS6toCEdAw/mSwnH/+HV9lChoBkdAdEluzhP0qmgHS7doCEdAw/mX5GjKxXV9lChoBkdAchOvgWJrL2gHS55oCEdAw/mf3L3bmHV9lChoBkdAc7hnDiwSrmgHS8poCEdAw/mezXz19XV9lChoBkdAciWbSJCSimgHS8NoCEdAw/mkRGtp23V9lChoBkdAcVO7OE/SpmgHS65oCEdAw/m1eHBUJnV9lChoBkdASDPxJ/XoT2gHS3loCEdAw/m/lDneSHV9lChoBkdAclDeEIw/PmgHS5poCEdAw/nCDSPU8XV9lChoBkdAcZTo9s7+1mgHS7toCEdAw/nBuhsZYXV9lChoBkdAc0WCf6Ggz2gHS6ZoCEdAw/nAXWvr4XV9lChoBkdAc9TQ6ZH/cWgHS8toCEdAw/nOfms/6nV9lChoBkdAc9oyLhrFfmgHS9ZoCEdAw/nOgam4zHV9lChoBkdAcuyhESdvsWgHS8xoCEdAw/nXPIn0CnV9lChoBkdAcVMRv3rUsmgHS7ZoCEdAw/nXOY6XB3V9lChoBkdAcvOwFTvRZ2gHS9JoCEdAw/neBoVVP3V9lChoBkdAcNBFGG21D2gHS6JoCEdAw/nkSr5qM3V9lChoBkdAc/Q37DVH4GgHS8loCEdAw/nqaAnUlXV9lChoBkdAcgl+GXXyy2gHS7toCEdAw/ntrmhdt3V9lChoBkdAcT0dtEXtSmgHS65oCEdAw/nzC79Q43V9lChoBkdAcsPvZAY51mgHS61oCEdAw/n8yeI2wXV9lChoBkdAcmia+vhZQ2gHS79oCEdAw/oDjTa0yHV9lChoBkdAcEUg1WKdhGgHS6doCEdAw/olAYYR/XV9lChoBkdAccEiNKh+OWgHS7FoCEdAw/owMcZLqXV9lChoBkdAcJvB5X2du2gHS6toCEdAw/o0r/82rHV9lChoBkdAcBsJ+lTFVGgHS6NoCEdAw/o2BZpztHV9lChoBkdAcFa2Kl54W2gHS6NoCEdAw/o3jp9qlHV9lChoBkdAc+XHJtBOYmgHS7ZoCEdAw/o4la8pTnV9lChoBkdAcNRYsd1dPmgHS5toCEdAw/o+TLW7OHV9lChoBkdAcVPH80k4WGgHS7ZoCEdAw/pI0WM0g3V9lChoBkdAcOI/8l5WzWgHS6poCEdAw/pHcM3IdXV9lChoBkdAcrr7J4jbBWgHS7hoCEdAw/pPjKgZj3V9lChoBkdAcG7alDWsimgHS7ZoCEdAw/pS20iQk3V9lChoBkdAcQiKODJ2dWgHS6VoCEdAw/pa67ulXXV9lChoBkdAcWUDXvphW2gHS5toCEdAw/pjvP1L8XV9lChoBkdAcrRd3B55aGgHS6loCEdAw/piqz7di3V9lChoBkdAcfgxCpm29mgHS5RoCEdAw/pqOq//N3V9lChoBkdAcIJJQtSQ5mgHS59oCEdAw/pr7j1f3XV9lChoBkdAcE9ksz2vjmgHS7loCEdAw/pvz4k/r3V9lChoBkdAc9iKOT7l72gHS8VoCEdAw/p5pWV/t3V9lChoBkdAcs+A80UGmmgHS81oCEdAw/p+L7XQMXV9lChoBkdAdBaO7QLNOmgHS9JoCEdAw/p8eJ53T3V9lChoBkdAc4TypJf6XWgHS9VoCEdAw/qNoVVPvnV9lChoBkdAcTWMS9M9KWgHS6loCEdAw/qRzltCRnV9lChoBkdAdFqzsQd0aWgHS75oCEdAw/qVnNgSe3V9lChoBkdAc0/mJm/WUmgHS79oCEdAw/qdM6BAfXV9lChoBkdAc0WwnYxtYWgHS8poCEdAw/qeMR6F/XV9lChoBkdAcbhcc2itaWgHS7NoCEdAw/qmFWXC0nV9lChoBkdAcYUAEMb3oWgHTSsBaAhHQMP6p0jTrmh1fZQoaAZHQHGW+JP69ChoB0u2aAhHQMP6pzR6WxB1fZQoaAZHQHLqLylN1yNoB0vBaAhHQMP6qrIYFaB1fZQoaAZHQHBBeRPoFFFoB0u/aAhHQMP6rsZpBX11fZQoaAZHQHILDdDYywhoB0vHaAhHQMP6tFtj0+V1fZQoaAZHQHB1nnuAqd9oB0u7aAhHQMP6tB19v0h1fZQoaAZHQHOWlyvLX+VoB0vHaAhHQMP6zCYTkAB1fZQoaAZHQHHhd1QqI8BoB0uuaAhHQMP60cdYGMZ1fZQoaAZHQHGRgpnYg7poB0upaAhHQMP61gGr0at1fZQoaAZHQHByGxY7q6hoB0u0aAhHQMP61D3/PxB1fZQoaAZHQHDU4vFm4AloB0uyaAhHQMP63Qqy4Wl1fZQoaAZHQHFPZw4sEq5oB0uxaAhHQMP61vqTr3V1fZQoaAZHQHAwsmShakhoB0uqaAhHQMP65fGdZq51fZQoaAZHQHIRosmOU+toB0uxaAhHQMP66wsf7rN1fZQoaAZHQHLn57ojfN1oB0vMaAhHQMP67kU9IPN1fZQoaAZHQHJOg++ueSVoB0vPaAhHQMP67BG6PKd1fZQoaAZHQHDLYTsY2sJoB0uwaAhHQMP69j1f3N91fZQoaAZHQHOjDbWVeKNoB0uyaAhHQMP69G/N7jV1fZQoaAZHQHCZgl0HQhRoB0uiaAhHQMP69+AuqWF1fZQoaAZHQHFMudTYNAloB0uqaAhHQMP7CYnndO91fZQoaAZHQHOrdf9gndBoB0vKaAhHQMP7F1tGd7R1fZQoaAZHQHGcbvgFX7toB0u0aAhHQMP7Gw6QvHt1fZQoaAZHQHJRWxptaZBoB0ufaAhHQMP7HnvUjLV1fZQoaAZHQHRlQyIpH7RoB0vraAhHQMP7HjAJswd1fZQoaAZHQHKl63y7PIJoB0u4aAhHQMP7JZof0Vd1fZQoaAZHQHHTOUUwi7loB0u1aAhHQMP7LUrCm/F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oROezRCbFYyjJnYv+UerTjgACMA2luY5SKEZGgr8YON29DohcTXiUQXZsAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigVeji6dAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 64, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f362cd62440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f362cd624d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f362cd62560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f362cd625f0>", "_build": "<function ActorCriticPolicy._build at 0x7f362cd62680>", "forward": "<function ActorCriticPolicy.forward at 0x7f362cd62710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f362cd627a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f362cd62830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f362cd628c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f362cd62950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f362cd629e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f362cd62a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f362cd65240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2016000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692562220624020076, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAOb/Oj2Pti+6O0hTM5/Caq+dUNQ6SOXDswAAgD8AAIA/QBf+PXFcNbtILNg7b00aumzYi7xJGwW7AACAPwAAgD+aPqO8MPegPvuSaLxAdR2/jlcevX60kT0AAAAAAAAAAP3bi76E1Zk+kgi5PqGF4r5jTza+XV10PgAAAAAAAAAADdwuvlu3hLxnJJe85lkYu/B26z11r/A7AACAPwAAgD9GObe+j33KvXtWSD3EME+8jgzcPqvEj74AAAAAAAAAAE09Zz4B+Sw/aurZPRENH783z74+WtrkvAAAAAAAAAAAQ86ZPvSOUD92nfg9Fb4qvyLg0D7C/Re+AAAAAAAAAADaCoE+PAjrPggfRb4sUSK/u1pqPilkkb4AAAAAAAAAAJqcxjyPfnC6K+AbOLzLr7DW5Ea7ivQztwAAgD8AAIA/Mz+TvI++Y7rN72g9hAPGMuMGMDowyVQyAACAPwAAgD+22Hm+PB+QP2GFHL/MSzW/a4+Mvjcxmr4AAAAAAAAAAGa+Hbwqcok/HJ6TvRAQbL/7mxM7jl90PQAAAAAAAAAAGjamPoD+Hj8qu5q9lJ81v3MXsj7zGS++AAAAAAAAAABKGaq+ySE8P/t1Tb6ReSq/J3nCvorgwb0AAAAAAAAAAE2tkT2PUni6yS2NviqM27tZ+ms73vGlPAAAgD8AAIA/TReRPUfpWz8SW9I9tUFIv7A3CD4tri89AAAAAAAAAAAN9hq+e9TPOUKFuD68Y4S98NuOvU9Eyr0AAIA/AACAP9Mke76U7Fo+NiC3Pho87b6254a9irY1PgAAAAAAAAAAZiKAu0ixmbo6NBQ+UgTCtY0W+zqkyby0AACAPwAAgD8ayBe+tVieP7DR974W2iW/MUb8vSbBHb0AAAAAAAAAAI28kz2vE0s/w2+ePdxBUL/KPCk+yhUlPQAAAAAAAAAADR+IPQoHB7kW7wa+k071OgPUxDpOWNa7AACAPwAAgD+Nera9vZUlPuHFjj4J+uS+Q0z3vTEzET4AAAAAAAAAAGZqOzzsVKS7h/lLvXqjS710EiI8z/axPgAAgD8AAIA/zdwJPHZVf7zDgdK9EoeDvPPtoT1Y11U+AACAPwAAgD9mqt88cTjDPWx4BL46Xsq+4ohIvcAW5r0AAAAAAAAAAC0SPb5O9NO8ekcgvZ2tzburszc+8omePAAAgD8AAIA/ZgP7veykyjyCsHs+7Whyvhfv2Lx0/kU9AAAAAAAAAACAFn29rieJunukrToJhBo1ya0Iu068xrkAAIA/AACAPwDb5bzv/Gk9hnH4PD0/qb7NZc0717WavQAAAAAAAAAAzSxvOxoZZT6LEDm97O4AvxH7Lb3WIpG9AAAAAAAAAAD26cC+WrYeP/3KWb2TOCS/QtO/vp0k0D0AAAAAAAAAADM76j3X6k67MvtWPGc2mDyEkkg8A2B2vQAAgD8AAIA/E4FXvkUUTD52KIM+8V64vvqjyb2oG989AAAAAAAAAACNhPA9qlgaP1MQxD0NG1O/VPFTPjZAGj0AAAAAAAAAAOZPFr1U0I0/xmLIvVAdYL+uWIq87PMYPQAAAAAAAAAAwH7tvR9lyLmsk78+A/g8vsGxaD3+04O+AAAAAAAAgD8N2/69dJcDPn0RgD4CGtW+lZVtvcGpjT0AAAAAAAAAAA3xJ74LG0c/LlMFvqOfaL8fiii+bkBXvQAAAAAAAAAAQ/WtvuTc+D6CHss9y/QNv3sTrr5i3LI9AAAAAAAAAAAasXs91NgUP/MkGD0xtj6/N5mwPViE+b0AAAAAAAAAACY7Br7cRwQ9cOtvPh6Tj77tssk6o/zqPQAAAAAAAAAAuuhmvn6/9T7IBlW9RyYav8+Qj76oVuQ9AAAAAAAAAACNJQ0+FA7SumokXr5MMYU8DPBvPd9OGL4AAIA/AACAPzOPMj2kNnq7/K8yvjZ21bj36ds8UqRovQAAAAAAAIA/ALgVPk8ndj3GD5S+nNl+viYyh73J3yS9AAAAAAAAAAAmnRg+tqFTvD7v7joLuKO5xYm5vfr2droAAIA/AACAP6ZyPT6us5C8EmvGujYbkTnbJvm9yLYUOgAAgD8AAIA/swi/PemaWj33bIK+oKeKvh4m1L2MrbK9AAAAAAAAAADNa+C8nyuOu4ARvz0VBza+7fCmPAPSUL4AAAAAAACAPzMfcT0NRD8+FputPA0d+r7XXEM9MNXSvQAAAAAAAAAAjdDWPfGTfzw4+Va+jYyHvhNSi70zpNe9AAAAAAAAAAB9xIk+4QKHPtKYyb4feNW+4XG1PRAwY74AAAAAAAAAAFqcEz7pWxm8dQoFus8a1jet8oC96d8wOQAAgD8AAIA/ZlZzvPaIDrw4gOU9nJzjvTdDKz1OKtQ+AACAPwAAgD/mvcY9KOmgP3kMqz7SJRu/jQcePowArD0AAAAAAAAAAA34jz2i1sA+dWxEPUTyHL//rC0+friEvQAAAAAAAAAAKkdavtyAoj8qfBm/Hssev39EPL5SXI2+AAAAAAAAAACafOQ8YYZsPzn+ED1W02a/9rBmPcK9pz0AAAAAAAAAADM1RT1SwKG5kn7dtaftRbH/wLE7NBMENQAAgD8AAIA/DWedvT36RLlBaww9Kbflt2AIszvtoN+2AACAPwAAgD+Aapm9BaA2P3r1s70cp0q/0wvYvbURYL0AAAAAAAAAABr8Z70KQgu7TSEKPlYUpzytlCa8oCuPPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIu9IClrM2MAWyUS9GMAXSUR0CzdvISDh99dX2UKGgGR0ByrKPOpsGgaAdLymgIR0Czdv2NrCWNdX2UKGgGR0BxcPWrfcesaAdLvGgIR0CzdwRQBPsSdX2UKGgGR0B0eNRCQcPwaAdLwGgIR0Czdv/1g6U8dX2UKGgGR0BxCWEg4ffXaAdLpGgIR0Czdy167dzodX2UKGgGR0Bw2dFz+3pfaAdLqmgIR0CzdzsM7U5NdX2UKGgGR0Bw/Rx7zCk5aAdLrGgIR0Czd1vMwDeTdX2UKGgGR0BydZd4VymzaAdL3GgIR0Czd2XlfZ27dX2UKGgGR0ByYyq4pc5baAdLumgIR0Czd3Mx0uDjdX2UKGgGR0BythMIu5BkaAdL4mgIR0Czd4pnQID6dX2UKGgGR0BzRq+7Dl5oaAdLwmgIR0Czd520mdAgdX2UKGgGR0BzIxPepGWlaAdL1WgIR0Czd6Rk3CKrdX2UKGgGR0ByF/7Gecx1aAdLjmgIR0Czd6zCUHIIdX2UKGgGR0BwUQIToMa1aAdLoWgIR0Czd6+BYmsvdX2UKGgGR0ByLwkHD766aAdLsmgIR0Czd7V1nuiOdX2UKGgGR0Bya/SRbKRuaAdLnmgIR0Czd71jEvTPdX2UKGgGR0Bx10DgZTAGaAdLpWgIR0Czd+1x4ptrdX2UKGgGR0BzC3oouwotaAdLy2gIR0Czd+jkhib2dX2UKGgGR0ByNILZzxPPaAdLm2gIR0Czd/VMdtEYdX2UKGgGR0ByX9YW+GoKaAdL1WgIR0CzeA5uyeI3dX2UKGgGR8Aa391loUSJaAdLemgIR0CzeBF2V3UydX2UKGgGR0BxvoKE384xaAdLu2gIR0CzeD4ao/A1dX2UKGgGR0Bx6VDJEH+qaAdLrmgIR0CzeFKQvHtGdX2UKGgGR0Byu8KneiztaAdL2WgIR0CzeFPj4pMIdX2UKGgGR0Apfadtl7MQaAdLZWgIR0CzeF02cawVdX2UKGgGR0BwFMomXw9aaAdLs2gIR0CzeHw8W9DhdX2UKGgGR0BxhcB6rvLHaAdLtWgIR0CzeH6GpMpPdX2UKGgGR0BwFV0gbIcSaAdLnGgIR0CzeLB1Tzd2dX2UKGgGR0Byk1Fy7wrlaAdLomgIR0CzeLX974SIdX2UKGgGR0BzY1KZlWfcaAdL5GgIR0CzeLkFB6a9dX2UKGgGR0ByX6tKZlWfaAdLw2gIR0CzeLeAAhjfdX2UKGgGR0Bzjzv1DjR2aAdL5mgIR0CzeMxri2lVdX2UKGgGR0Bx+snssxwiaAdLk2gIR0CzeMsrNGExdX2UKGgGR0Bvc6/CZWq+aAdLnGgIR0CzeN/zSThYdX2UKGgGR0ByEzKxLTQWaAdLnmgIR0CzeOnoxHoYdX2UKGgGR0Buh4DxLCemaAdLmmgIR0CzePHZkCmudX2UKGgGR0By5xdQfp2VaAdL4WgIR0CzePTJyQxOdX2UKGgGR0BwqzKs+3YuaAdLmmgIR0CzeQiu+yqudX2UKGgGR0BzCFkpZwGXaAdL1mgIR0CzeQz5ftx/dX2UKGgGR0BztYDRtxdZaAdL6GgIR0CzeQvTTfBOdX2UKGgGR0BzYzC53C9AaAdLz2gIR0CzeTZElVtGdX2UKGgGR0BwUYAGSpzcaAdLpGgIR0CzeUBNRFZxdX2UKGgGR0BzWv6zmfXgaAdL42gIR0CzeVp7w8W9dX2UKGgGR0BzQbVRUFSsaAdLtGgIR0CzeWqp97WvdX2UKGgGR0BwXXiwSrYHaAdLrWgIR0CzeYrVOKwZdX2UKGgGR0BwGpuzhP0qaAdLqGgIR0CzeYrehwl0dX2UKGgGR0BxFflmvnr6aAdLr2gIR0CzeZAEU0vXdX2UKGgGR0BytmlyimEXaAdLumgIR0CzeZkzTF2ndX2UKGgGR0Bx4sMF2V3VaAdLmGgIR0CzecxR2r4ndX2UKGgGR0BxBkjlgc94aAdLmmgIR0Czeg3DJlredX2UKGgGR0BzCbRSgoPTaAdL0GgIR0CzegxdIGyHdX2UKGgGR0BywjvTgEU1aAdLn2gIR0CzejFh5PdmdX2UKGgGR0BwzHNpudf+aAdLv2gIR0CzelKvRqoIdX2UKGgGR0BwtorDqGDdaAdLn2gIR0CzepRUJfICdX2UKGgGR0BwyrxZuAI6aAdLyWgIR0CzepPQ0GeMdX2UKGgGR0BwU6ncclw+aAdLtWgIR0Czepo+0PYndX2UKGgGR0BwRBpWV/tqaAdLu2gIR0CzereKKpDNdX2UKGgGR0ByMRdZ7ojfaAdLumgIR0CzesHrY5DJdX2UKGgGR0BmeHzpX6qLaAdN6ANoCEdAs3r0M/hVEXV9lChoBkdAcVxyv9tMwmgHS8xoCEdAs3rxx+8XenV9lChoBkdAchM7e2uxKWgHS71oCEdAs3sBJ4B3inV9lChoBkdAcrhvt+kP+WgHS6VoCEdAs3sA1sLv1HV9lChoBkdAcsmd+ocaO2gHS8poCEdAs3sF6eGwinV9lChoBkdAcUXEMspXqGgHS7VoCEdAs3sULKFIu3V9lChoBkdAcAuf0mMOw2gHS6poCEdAs3sTXjENv3V9lChoBkdAcf0D+irT6WgHS65oCEdAs3sTCKrJbXV9lChoBkdAcKGruIAOrmgHS5toCEdAs3sfa8Hv+nV9lChoBkdAc51lZ5iVjmgHS7xoCEdAs3tEMpgCwXV9lChoBkdAcyVNiYsunWgHS7NoCEdAs3ta2x6fJ3V9lChoBkdAc5PPy08eS2gHS99oCEdAs3tw1zhgmnV9lChoBkdAcb8zLwF1S2gHS5loCEdAs3uSHaewtHV9lChoBkdAc80Zpi7TUmgHS/JoCEdAs3uRemelK3V9lChoBkdAcew6XBxgiWgHS5JoCEdAs3uQxvegtnV9lChoBkdAbiCm8dxQzmgHS51oCEdAs3umGZeAu3V9lChoBkdAczBIQvpQlGgHS8NoCEdAs3vM/Z/Tb3V9lChoBkdAcloyRB/qgWgHS7JoCEdAs3vcPbwjMXV9lChoBkdAcfvNnXd0rGgHS9toCEdAs3vZ/Ue+23V9lChoBkdAcFlPqcEvCmgHS6ZoCEdAs3vk3fhuO3V9lChoBkdAcZTuNPxhD2gHS5VoCEdAs3vsR9PUKHV9lChoBkdAckTNRm9QGmgHS4toCEdAs3wl/WlMy3V9lChoBkdAcVzNlAeJYWgHS5BoCEdAs3wmIXTEznV9lChoBkdAceo544ZMtmgHS7RoCEdAs3wv/MnqmnV9lChoBkdAcl6lUIcBEWgHS59oCEdAs3w+TvAoHHV9lChoBkdAcJGCK77KrGgHS8BoCEdAs3xJeVs1sXV9lChoBkdAcbVkZaV2R2gHS5NoCEdAs3xbRZ2ZA3V9lChoBkdAcP7Jo0ygw2gHS55oCEdAs3xYOx0MgHV9lChoBkdAcSbDeTFERmgHS5poCEdAs3xX863iJnV9lChoBkdAc3sI9C/oJWgHS9ZoCEdAs3x1l2/zrnV9lChoBkdAc47CngpBomgHS9BoCEdAs3yLEDQqqnV9lChoBkdAcqZQXQ+lj2gHS5doCEdAs3y8yfthNXV9lChoBkdAcdV1YhdMTWgHS7JoCEdAs3zSHxjJ+3V9lChoBkdAcuRQ+EAYHmgHS+VoCEdAs3zbS/j81nV9lChoBkdAcOPHdoFmnWgHS6hoCEdAs3zhNHpbEHV9lChoBkdAcFf0hePaMGgHS5NoCEdAs3zx6u4gBHV9lChoBkdAc+Dw1zhgmmgHS7ZoCEdAs305uNxVAHV9lChoBkdAc6bSFoL5RGgHS+hoCEdAs31KEdvKl3V9lChoBkdAcdxQNCqp+GgHS75oCEdAs31Oecx0uHV9lChoBkdAcaet3fQ8fWgHS7RoCEdAs31gR02ca3V9lChoBkdAcrH6oESuhmgHS8ZoCEdAs31rsw+MZXV9lChoBkdAbyw/5ckdFWgHS6VoCEdAs32pZ7ojfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 450, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 700, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2406025474cbf41c6ed6303cdf5c659df3e1eff7c1b1f2c8a408862cb49555ec
3
- size 148986
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3673f328a22d1d78c7424005a8136991561d1c8322ed9eccdfd2eceb22de1c41
3
+ size 148737
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b7f599ea9e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b7f599eaa70>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7f599eab00>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b7f599eab90>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b7f599eac20>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b7f599eacb0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7f599ead40>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7f599eadd0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b7f599eae60>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7f599eaef0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b7f599eaf80>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7f599eb010>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b7f599e5b80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 10092544,
25
- "_total_timesteps": 10000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1692292796541937971,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAC0eKD5nQlQ/IHYnPscVEb84J8g+inD3uwAAAAAAAAAAgN4HPVwDBrxfJLm9TV8yvNIGFj1ozFy+AACAPwAAgD8tAKi+xCwrP030Sz5qAjC/N1fTvoCaUD4AAAAAAAAAAOZ6+b0BYxw+AN+9PsdC976e/ng7gp1tPgAAAAAAAAAARoM4vmk+vT5uyXQ+5f8lvxdnLr5CbUk+AAAAAAAAAABN69C9ktmGP4Oyzr5cNEu/fcpovkPuyr4AAAAAAAAAAKb3gb29wmQ8z4OiPlSZ4b6enQQ+OiPiPQAAAAAAAAAAwKQIvsQIWz+mu3O+vUY4v5nip76mZwe+AAAAAAAAAACAmk09L1inP/D3pD66ZgC/thpJPcv0TT4AAAAAAAAAAM08o7tcAwy6Krr4u20M17L8ToQ6PWT1MgAAgD8AAIA/M0vCO++Itj+8CD4+z9NKPj+a+jeg7Ec9AAAAAAAAAADdTWa+9lbRPnzPij5apRq/A/GEvm1leD4AAAAAAAAAAM1HRz37Rb8/GbDBPgxYJj5XCAY82hT1PQAAAAAAAAAAmhDdPMMRe7oYoY83nadVtghPD7pUEZy2AAAAAAAAAAAN6cU9bWCFPu76/r7HHuC+ch5lvnCma74AAAAAAAAAAJpHNLwfRf25gK0ruDPP8DBBbPG6nnZKNwAAgD8AAIA/TRwbvfqSkT+es8u9J39Mvy64Rr2aHpC9AAAAAAAAAADzYPa9E0kCPwl9uj0h4Ri/L70vvtqfnj0AAAAAAAAAAGaMCbyDzGC8Op1rvfosSD3J5IQ9nu4DPAAAgD8AAIA/APh2vb87Kj5gKmM+gWb2vvZqrL1c/Qo+AAAAAAAAAAAzLTS8sXS3Py7bPb43hco98wFNPDAOKj0AAAAAAAAAAOb3r72PDkq64wU/PkT5ob4B9yI94Eq5PQAAAAAAAIA/ze2yPRTsirrZ+CW5GZ9dthLjmrqGHj04AAAAAAAAgD8za9o7ZPgYPJIBAL52B0S+g4O/vXpltb0AAAAAAAAAADPDAL1PwXy8kfcdPiIJlL0+tV28DxWKvgAAgD8AAIA/ZimvPBTEoLruhGU83vD3OCGQwrpY3+g3AACAPwAAgD/TLH4+/GpRP3VdNj6KQCu/S94LP3F0nLsAAAAAAAAAADMbmL142+c+2k0zPE1OQb+P8+O9sNoSPAAAAAAAAAAAKihhvgkDhT9l99S+xskcvxdz+L7/24m+AAAAAAAAAABtbHs+9xZOP1uhdr0K/TG/6w7kPs5Sg74AAAAAAAAAAFrTe74TGy4/O6/qPQqONL/n7ae+atfgPQAAAAAAAAAAZvgovalpLD89jpy8B9Fjv3ddlL0xe506AAAAAAAAAAAziYK8rCC+P4qEP77Fa4U+q/GhPOVRmT0AAAAAAAAAAGaxAD0zwmw/2pDUPQJ/Tr+0xvA9iqiLuwAAAAAAAAAAAIgyvU/QBT7s5MM97fDjviY9k71eEMI9AAAAAAAAAABmd7m8KYASusXAUbxysIs83TZAO5g3c70AAIA/AACAP5r3WT0y6rI/Q0AMP4bDL77FA0w8nPNIPgAAAAAAAAAARi4ZPp4irD99mvw+d9fvvuTQhz7q66E+AAAAAAAAAABmDtW7n37vu7B1+rpck6k84aQ+PSZZjb0AAIA/AACAP2YKVjx7qpW6BrpoNfdIvC8e4No6BlKjtAAAgD8AAIA/IwNhvkyTsD5Yr+A+hxESv/QHEL7vUoQ+AAAAAAAAAABGI4K+h8MgPzawKT2F+T2/ceHAvk8SGD4AAAAAAAAAAHp6GL6kEhw+aFfDPrLB3r7fQk68mGM5PgAAAAAAAAAAs9ZIPpA5hj9KQcY+ieoMvwen5D42ZGY+AAAAAAAAAADin76+kpx4PxYZDr5LhTG/gRgdvy/3Hz0AAAAAAAAAAKYrAb6P/ho/VdQbO9JuMr+Z4V++UM0QPQAAAAAAAAAAs3dIvfbmbbwT16g9G99cPUMRqb0Lt8w8AACAPwAAgD+mWww+84NdP6ohHT7i7jS/7X60PkUArzoAAAAAAAAAAJq5+7vDRXG6eh5lMZTE8i5lCTa7Cr0PsQAAgD8AAIA/miQnvgz7Gz+HFbi8sEw6v1jdpb6KWAg+AAAAAAAAAACaSlU+EtlPP8ocRTx+nS+/YmHbPmKpFb4AAAAAAAAAADNI8Lz2/i68cNnQPVYKxbzPVJm979mivQAAgD8AAIA/AHUAPWyH+ruvtxO7LWNxPEeYT73hbEw9AACAPwAAgD82TrC+uQsmPzG1ID4Oeyu/yfQDv44gST4AAAAAAAAAAI2xmD1ROpc/Eh1aPmsuLL+79C0+MpooPgAAAAAAAAAAAPS/vD3iPrtNhXU9+zqSPHohWbxYfXs9AACAPwAAgD/m9o69D1dsvEl3iz6jOAa+YwTCvcMi6r4AAIA/AACAP2Y6Sz5njeA+7uTkvjbG5b70CYc9GtCwvgAAAAAAAAAAgEkbvcjyrjv8B7c+0wRQvqE3Gz7y+XW/AAAAAAAAgD+aRq+8XKs8uthFcjf+/3syF6NoutnBj7YAAIA/AACAP5qtPDy0HpG8IjAePnJDjD3p1nu8kImUvAAAgD8AAIA/mp0uvFzoPTuYHmU9fSySvnFt5DsjwBu7AAAAAAAAAABuHpS+BCOiP8zSCb9BqRO/46Hwvl/djb4AAAAAAAAAADND/7x2sjG8a1/gPabEozw30T2971upuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.009254400000000107,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJV1vQ4S6GMAWyUS7iMAXSUR0DD+O9YB/7SdX2UKGgGR0Bwav4ZdfLLaAdLrmgIR0DD+P1EXtSidX2UKGgGR0ByMq4rjHXFaAdLu2gIR0DD+QunuRcNdX2UKGgGR0BxMI5PuXu3aAdLmWgIR0DD+RAFLWZrdX2UKGgGR0Byv69alk6LaAdLxWgIR0DD+RY1rIo3dX2UKGgGR0Bywntu1ndwaAdLn2gIR0DD+RltEXtTdX2UKGgGR0ByP1oXbdrPaAdLk2gIR0DD+Sx8KG+LdX2UKGgGR0BxTxl18stkaAdLtmgIR0DD+SfcL0BfdX2UKGgGR0ByWtiNKh+OaAdLy2gIR0DD+TtnEl3RdX2UKGgGR0ByLfGYKIBSaAdLuWgIR0DD+T7Kkl/pdX2UKGgGR0BzBDWd3B55aAdLqWgIR0DD+TyZ4Oc2dX2UKGgGR0Bvr68e0XxfaAdLo2gIR0DD+T8PtlZpdX2UKGgGR0Bxj3pSrHU+aAdLsGgIR0DD+URuTA32dX2UKGgGR0BwajLxI8QqaAdLuWgIR0DD+UznLaEjdX2UKGgGR0BwuqOcUdq+aAdLtGgIR0DD+VHbO/tZdX2UKGgGR0By6ugRK6FuaAdN/gFoCEdAw/lQ4axX4nV9lChoBkdAcQnLCemNzmgHS5ZoCEdAw/lRyyUs4HV9lChoBkdAcIY8m8dxQ2gHS69oCEdAw/lRXBguy3V9lChoBkdAce6ymQ8wH2gHS8BoCEdAw/lSvpQk5nV9lChoBkdAcomtu1ndwmgHS75oCEdAw/lc2Zy+6HV9lChoBkdAcVBV3EAHV2gHS6toCEdAw/lhkkrwv3V9lChoBkdAcU4aV2Rq5GgHS6JoCEdAw/lpAeJYT3V9lChoBkdAcpEHTqjaf2gHS99oCEdAw/l8SOinHnV9lChoBkdAcqnblA/s3WgHS8doCEdAw/mJG4qgAnV9lChoBkdAcxAqnFYMfGgHS8FoCEdAw/mFjMmnfnV9lChoBkdAcYoQ66reZWgHS8doCEdAw/mEokzGgnV9lChoBkdAcxwT4cm0FGgHS9RoCEdAw/mTBP9DQnV9lChoBkdAcKx7p3X7L2gHS6toCEdAw/mSwnH/+HV9lChoBkdAdEluzhP0qmgHS7doCEdAw/mX5GjKxXV9lChoBkdAchOvgWJrL2gHS55oCEdAw/mf3L3bmHV9lChoBkdAc7hnDiwSrmgHS8poCEdAw/mezXz19XV9lChoBkdAciWbSJCSimgHS8NoCEdAw/mkRGtp23V9lChoBkdAcVO7OE/SpmgHS65oCEdAw/m1eHBUJnV9lChoBkdASDPxJ/XoT2gHS3loCEdAw/m/lDneSHV9lChoBkdAclDeEIw/PmgHS5poCEdAw/nCDSPU8XV9lChoBkdAcZTo9s7+1mgHS7toCEdAw/nBuhsZYXV9lChoBkdAc0WCf6Ggz2gHS6ZoCEdAw/nAXWvr4XV9lChoBkdAc9TQ6ZH/cWgHS8toCEdAw/nOfms/6nV9lChoBkdAc9oyLhrFfmgHS9ZoCEdAw/nOgam4zHV9lChoBkdAcuyhESdvsWgHS8xoCEdAw/nXPIn0CnV9lChoBkdAcVMRv3rUsmgHS7ZoCEdAw/nXOY6XB3V9lChoBkdAcvOwFTvRZ2gHS9JoCEdAw/neBoVVP3V9lChoBkdAcNBFGG21D2gHS6JoCEdAw/nkSr5qM3V9lChoBkdAc/Q37DVH4GgHS8loCEdAw/nqaAnUlXV9lChoBkdAcgl+GXXyy2gHS7toCEdAw/ntrmhdt3V9lChoBkdAcT0dtEXtSmgHS65oCEdAw/nzC79Q43V9lChoBkdAcsPvZAY51mgHS61oCEdAw/n8yeI2wXV9lChoBkdAcmia+vhZQ2gHS79oCEdAw/oDjTa0yHV9lChoBkdAcEUg1WKdhGgHS6doCEdAw/olAYYR/XV9lChoBkdAccEiNKh+OWgHS7FoCEdAw/owMcZLqXV9lChoBkdAcJvB5X2du2gHS6toCEdAw/o0r/82rHV9lChoBkdAcBsJ+lTFVGgHS6NoCEdAw/o2BZpztHV9lChoBkdAcFa2Kl54W2gHS6NoCEdAw/o3jp9qlHV9lChoBkdAc+XHJtBOYmgHS7ZoCEdAw/o4la8pTnV9lChoBkdAcNRYsd1dPmgHS5toCEdAw/o+TLW7OHV9lChoBkdAcVPH80k4WGgHS7ZoCEdAw/pI0WM0g3V9lChoBkdAcOI/8l5WzWgHS6poCEdAw/pHcM3IdXV9lChoBkdAcrr7J4jbBWgHS7hoCEdAw/pPjKgZj3V9lChoBkdAcG7alDWsimgHS7ZoCEdAw/pS20iQk3V9lChoBkdAcQiKODJ2dWgHS6VoCEdAw/pa67ulXXV9lChoBkdAcWUDXvphW2gHS5toCEdAw/pjvP1L8XV9lChoBkdAcrRd3B55aGgHS6loCEdAw/piqz7di3V9lChoBkdAcfgxCpm29mgHS5RoCEdAw/pqOq//N3V9lChoBkdAcIJJQtSQ5mgHS59oCEdAw/pr7j1f3XV9lChoBkdAcE9ksz2vjmgHS7loCEdAw/pvz4k/r3V9lChoBkdAc9iKOT7l72gHS8VoCEdAw/p5pWV/t3V9lChoBkdAcs+A80UGmmgHS81oCEdAw/p+L7XQMXV9lChoBkdAdBaO7QLNOmgHS9JoCEdAw/p8eJ53T3V9lChoBkdAc4TypJf6XWgHS9VoCEdAw/qNoVVPvnV9lChoBkdAcTWMS9M9KWgHS6loCEdAw/qRzltCRnV9lChoBkdAdFqzsQd0aWgHS75oCEdAw/qVnNgSe3V9lChoBkdAc0/mJm/WUmgHS79oCEdAw/qdM6BAfXV9lChoBkdAc0WwnYxtYWgHS8poCEdAw/qeMR6F/XV9lChoBkdAcbhcc2itaWgHS7NoCEdAw/qmFWXC0nV9lChoBkdAcYUAEMb3oWgHTSsBaAhHQMP6p0jTrmh1fZQoaAZHQHGW+JP69ChoB0u2aAhHQMP6pzR6WxB1fZQoaAZHQHLqLylN1yNoB0vBaAhHQMP6qrIYFaB1fZQoaAZHQHBBeRPoFFFoB0u/aAhHQMP6rsZpBX11fZQoaAZHQHILDdDYywhoB0vHaAhHQMP6tFtj0+V1fZQoaAZHQHB1nnuAqd9oB0u7aAhHQMP6tB19v0h1fZQoaAZHQHOWlyvLX+VoB0vHaAhHQMP6zCYTkAB1fZQoaAZHQHHhd1QqI8BoB0uuaAhHQMP60cdYGMZ1fZQoaAZHQHGRgpnYg7poB0upaAhHQMP61gGr0at1fZQoaAZHQHByGxY7q6hoB0u0aAhHQMP61D3/PxB1fZQoaAZHQHDU4vFm4AloB0uyaAhHQMP63Qqy4Wl1fZQoaAZHQHFPZw4sEq5oB0uxaAhHQMP61vqTr3V1fZQoaAZHQHAwsmShakhoB0uqaAhHQMP65fGdZq51fZQoaAZHQHIRosmOU+toB0uxaAhHQMP66wsf7rN1fZQoaAZHQHLn57ojfN1oB0vMaAhHQMP67kU9IPN1fZQoaAZHQHJOg++ueSVoB0vPaAhHQMP67BG6PKd1fZQoaAZHQHDLYTsY2sJoB0uwaAhHQMP69j1f3N91fZQoaAZHQHOjDbWVeKNoB0uyaAhHQMP69G/N7jV1fZQoaAZHQHCZgl0HQhRoB0uiaAhHQMP69+AuqWF1fZQoaAZHQHFMudTYNAloB0uqaAhHQMP7CYnndO91fZQoaAZHQHOrdf9gndBoB0vKaAhHQMP7F1tGd7R1fZQoaAZHQHGcbvgFX7toB0u0aAhHQMP7Gw6QvHt1fZQoaAZHQHJRWxptaZBoB0ufaAhHQMP7HnvUjLV1fZQoaAZHQHRlQyIpH7RoB0vraAhHQMP7HjAJswd1fZQoaAZHQHKl63y7PIJoB0u4aAhHQMP7JZof0Vd1fZQoaAZHQHHTOUUwi7loB0u1aAhHQMP7LUrCm/F1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 308,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -69,22 +69,22 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oROezRCbFYyjJnYv+UerTjgACMA2luY5SKEZGgr8YON29DohcTXiUQXZsAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigVeji6dAHVidWIu",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
- "_np_random": "Generator(PCG64)"
78
  },
79
  "n_envs": 64,
80
- "n_steps": 2048,
81
- "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f362cd62440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f362cd624d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f362cd62560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f362cd625f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f362cd62680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f362cd62710>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f362cd627a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f362cd62830>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f362cd628c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f362cd62950>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f362cd629e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f362cd62a70>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f362cd65240>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2016000,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1692562220624020076,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAOb/Oj2Pti+6O0hTM5/Caq+dUNQ6SOXDswAAgD8AAIA/QBf+PXFcNbtILNg7b00aumzYi7xJGwW7AACAPwAAgD+aPqO8MPegPvuSaLxAdR2/jlcevX60kT0AAAAAAAAAAP3bi76E1Zk+kgi5PqGF4r5jTza+XV10PgAAAAAAAAAADdwuvlu3hLxnJJe85lkYu/B26z11r/A7AACAPwAAgD9GObe+j33KvXtWSD3EME+8jgzcPqvEj74AAAAAAAAAAE09Zz4B+Sw/aurZPRENH783z74+WtrkvAAAAAAAAAAAQ86ZPvSOUD92nfg9Fb4qvyLg0D7C/Re+AAAAAAAAAADaCoE+PAjrPggfRb4sUSK/u1pqPilkkb4AAAAAAAAAAJqcxjyPfnC6K+AbOLzLr7DW5Ea7ivQztwAAgD8AAIA/Mz+TvI++Y7rN72g9hAPGMuMGMDowyVQyAACAPwAAgD+22Hm+PB+QP2GFHL/MSzW/a4+Mvjcxmr4AAAAAAAAAAGa+Hbwqcok/HJ6TvRAQbL/7mxM7jl90PQAAAAAAAAAAGjamPoD+Hj8qu5q9lJ81v3MXsj7zGS++AAAAAAAAAABKGaq+ySE8P/t1Tb6ReSq/J3nCvorgwb0AAAAAAAAAAE2tkT2PUni6yS2NviqM27tZ+ms73vGlPAAAgD8AAIA/TReRPUfpWz8SW9I9tUFIv7A3CD4tri89AAAAAAAAAAAN9hq+e9TPOUKFuD68Y4S98NuOvU9Eyr0AAIA/AACAP9Mke76U7Fo+NiC3Pho87b6254a9irY1PgAAAAAAAAAAZiKAu0ixmbo6NBQ+UgTCtY0W+zqkyby0AACAPwAAgD8ayBe+tVieP7DR974W2iW/MUb8vSbBHb0AAAAAAAAAAI28kz2vE0s/w2+ePdxBUL/KPCk+yhUlPQAAAAAAAAAADR+IPQoHB7kW7wa+k071OgPUxDpOWNa7AACAPwAAgD+Nera9vZUlPuHFjj4J+uS+Q0z3vTEzET4AAAAAAAAAAGZqOzzsVKS7h/lLvXqjS710EiI8z/axPgAAgD8AAIA/zdwJPHZVf7zDgdK9EoeDvPPtoT1Y11U+AACAPwAAgD9mqt88cTjDPWx4BL46Xsq+4ohIvcAW5r0AAAAAAAAAAC0SPb5O9NO8ekcgvZ2tzburszc+8omePAAAgD8AAIA/ZgP7veykyjyCsHs+7Whyvhfv2Lx0/kU9AAAAAAAAAACAFn29rieJunukrToJhBo1ya0Iu068xrkAAIA/AACAPwDb5bzv/Gk9hnH4PD0/qb7NZc0717WavQAAAAAAAAAAzSxvOxoZZT6LEDm97O4AvxH7Lb3WIpG9AAAAAAAAAAD26cC+WrYeP/3KWb2TOCS/QtO/vp0k0D0AAAAAAAAAADM76j3X6k67MvtWPGc2mDyEkkg8A2B2vQAAgD8AAIA/E4FXvkUUTD52KIM+8V64vvqjyb2oG989AAAAAAAAAACNhPA9qlgaP1MQxD0NG1O/VPFTPjZAGj0AAAAAAAAAAOZPFr1U0I0/xmLIvVAdYL+uWIq87PMYPQAAAAAAAAAAwH7tvR9lyLmsk78+A/g8vsGxaD3+04O+AAAAAAAAgD8N2/69dJcDPn0RgD4CGtW+lZVtvcGpjT0AAAAAAAAAAA3xJ74LG0c/LlMFvqOfaL8fiii+bkBXvQAAAAAAAAAAQ/WtvuTc+D6CHss9y/QNv3sTrr5i3LI9AAAAAAAAAAAasXs91NgUP/MkGD0xtj6/N5mwPViE+b0AAAAAAAAAACY7Br7cRwQ9cOtvPh6Tj77tssk6o/zqPQAAAAAAAAAAuuhmvn6/9T7IBlW9RyYav8+Qj76oVuQ9AAAAAAAAAACNJQ0+FA7SumokXr5MMYU8DPBvPd9OGL4AAIA/AACAPzOPMj2kNnq7/K8yvjZ21bj36ds8UqRovQAAAAAAAIA/ALgVPk8ndj3GD5S+nNl+viYyh73J3yS9AAAAAAAAAAAmnRg+tqFTvD7v7joLuKO5xYm5vfr2droAAIA/AACAP6ZyPT6us5C8EmvGujYbkTnbJvm9yLYUOgAAgD8AAIA/swi/PemaWj33bIK+oKeKvh4m1L2MrbK9AAAAAAAAAADNa+C8nyuOu4ARvz0VBza+7fCmPAPSUL4AAAAAAACAPzMfcT0NRD8+FputPA0d+r7XXEM9MNXSvQAAAAAAAAAAjdDWPfGTfzw4+Va+jYyHvhNSi70zpNe9AAAAAAAAAAB9xIk+4QKHPtKYyb4feNW+4XG1PRAwY74AAAAAAAAAAFqcEz7pWxm8dQoFus8a1jet8oC96d8wOQAAgD8AAIA/ZlZzvPaIDrw4gOU9nJzjvTdDKz1OKtQ+AACAPwAAgD/mvcY9KOmgP3kMqz7SJRu/jQcePowArD0AAAAAAAAAAA34jz2i1sA+dWxEPUTyHL//rC0+friEvQAAAAAAAAAAKkdavtyAoj8qfBm/Hssev39EPL5SXI2+AAAAAAAAAACafOQ8YYZsPzn+ED1W02a/9rBmPcK9pz0AAAAAAAAAADM1RT1SwKG5kn7dtaftRbH/wLE7NBMENQAAgD8AAIA/DWedvT36RLlBaww9Kbflt2AIszvtoN+2AACAPwAAgD+Aapm9BaA2P3r1s70cp0q/0wvYvbURYL0AAAAAAAAAABr8Z70KQgu7TSEKPlYUpzytlCa8oCuPPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.008000000000000007,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIu9IClrM2MAWyUS9GMAXSUR0CzdvISDh99dX2UKGgGR0ByrKPOpsGgaAdLymgIR0Czdv2NrCWNdX2UKGgGR0BxcPWrfcesaAdLvGgIR0CzdwRQBPsSdX2UKGgGR0B0eNRCQcPwaAdLwGgIR0Czdv/1g6U8dX2UKGgGR0BxCWEg4ffXaAdLpGgIR0Czdy167dzodX2UKGgGR0Bw2dFz+3pfaAdLqmgIR0CzdzsM7U5NdX2UKGgGR0Bw/Rx7zCk5aAdLrGgIR0Czd1vMwDeTdX2UKGgGR0BydZd4VymzaAdL3GgIR0Czd2XlfZ27dX2UKGgGR0ByYyq4pc5baAdLumgIR0Czd3Mx0uDjdX2UKGgGR0BythMIu5BkaAdL4mgIR0Czd4pnQID6dX2UKGgGR0BzRq+7Dl5oaAdLwmgIR0Czd520mdAgdX2UKGgGR0BzIxPepGWlaAdL1WgIR0Czd6Rk3CKrdX2UKGgGR0ByF/7Gecx1aAdLjmgIR0Czd6zCUHIIdX2UKGgGR0BwUQIToMa1aAdLoWgIR0Czd6+BYmsvdX2UKGgGR0ByLwkHD766aAdLsmgIR0Czd7V1nuiOdX2UKGgGR0Bya/SRbKRuaAdLnmgIR0Czd71jEvTPdX2UKGgGR0Bx10DgZTAGaAdLpWgIR0Czd+1x4ptrdX2UKGgGR0BzC3oouwotaAdLy2gIR0Czd+jkhib2dX2UKGgGR0ByNILZzxPPaAdLm2gIR0Czd/VMdtEYdX2UKGgGR0ByX9YW+GoKaAdL1WgIR0CzeA5uyeI3dX2UKGgGR8Aa391loUSJaAdLemgIR0CzeBF2V3UydX2UKGgGR0BxvoKE384xaAdLu2gIR0CzeD4ao/A1dX2UKGgGR0Bx6VDJEH+qaAdLrmgIR0CzeFKQvHtGdX2UKGgGR0Byu8KneiztaAdL2WgIR0CzeFPj4pMIdX2UKGgGR0Apfadtl7MQaAdLZWgIR0CzeF02cawVdX2UKGgGR0BwFMomXw9aaAdLs2gIR0CzeHw8W9DhdX2UKGgGR0BxhcB6rvLHaAdLtWgIR0CzeH6GpMpPdX2UKGgGR0BwFV0gbIcSaAdLnGgIR0CzeLB1Tzd2dX2UKGgGR0Byk1Fy7wrlaAdLomgIR0CzeLX974SIdX2UKGgGR0BzY1KZlWfcaAdL5GgIR0CzeLkFB6a9dX2UKGgGR0ByX6tKZlWfaAdLw2gIR0CzeLeAAhjfdX2UKGgGR0Bzjzv1DjR2aAdL5mgIR0CzeMxri2lVdX2UKGgGR0Bx+snssxwiaAdLk2gIR0CzeMsrNGExdX2UKGgGR0Bvc6/CZWq+aAdLnGgIR0CzeN/zSThYdX2UKGgGR0ByEzKxLTQWaAdLnmgIR0CzeOnoxHoYdX2UKGgGR0Buh4DxLCemaAdLmmgIR0CzePHZkCmudX2UKGgGR0By5xdQfp2VaAdL4WgIR0CzePTJyQxOdX2UKGgGR0BwqzKs+3YuaAdLmmgIR0CzeQiu+yqudX2UKGgGR0BzCFkpZwGXaAdL1mgIR0CzeQz5ftx/dX2UKGgGR0BztYDRtxdZaAdL6GgIR0CzeQvTTfBOdX2UKGgGR0BzYzC53C9AaAdLz2gIR0CzeTZElVtGdX2UKGgGR0BwUYAGSpzcaAdLpGgIR0CzeUBNRFZxdX2UKGgGR0BzWv6zmfXgaAdL42gIR0CzeVp7w8W9dX2UKGgGR0BzQbVRUFSsaAdLtGgIR0CzeWqp97WvdX2UKGgGR0BwXXiwSrYHaAdLrWgIR0CzeYrVOKwZdX2UKGgGR0BwGpuzhP0qaAdLqGgIR0CzeYrehwl0dX2UKGgGR0BxFflmvnr6aAdLr2gIR0CzeZAEU0vXdX2UKGgGR0BytmlyimEXaAdLumgIR0CzeZkzTF2ndX2UKGgGR0Bx4sMF2V3VaAdLmGgIR0CzecxR2r4ndX2UKGgGR0BxBkjlgc94aAdLmmgIR0Czeg3DJlredX2UKGgGR0BzCbRSgoPTaAdL0GgIR0CzegxdIGyHdX2UKGgGR0BywjvTgEU1aAdLn2gIR0CzejFh5PdmdX2UKGgGR0BwzHNpudf+aAdLv2gIR0CzelKvRqoIdX2UKGgGR0BwtorDqGDdaAdLn2gIR0CzepRUJfICdX2UKGgGR0BwyrxZuAI6aAdLyWgIR0CzepPQ0GeMdX2UKGgGR0BwU6ncclw+aAdLtWgIR0Czepo+0PYndX2UKGgGR0BwRBpWV/tqaAdLu2gIR0CzereKKpDNdX2UKGgGR0ByMRdZ7ojfaAdLumgIR0CzesHrY5DJdX2UKGgGR0BmeHzpX6qLaAdN6ANoCEdAs3r0M/hVEXV9lChoBkdAcVxyv9tMwmgHS8xoCEdAs3rxx+8XenV9lChoBkdAchM7e2uxKWgHS71oCEdAs3sBJ4B3inV9lChoBkdAcrhvt+kP+WgHS6VoCEdAs3sA1sLv1HV9lChoBkdAcsmd+ocaO2gHS8poCEdAs3sF6eGwinV9lChoBkdAcUXEMspXqGgHS7VoCEdAs3sULKFIu3V9lChoBkdAcAuf0mMOw2gHS6poCEdAs3sTXjENv3V9lChoBkdAcf0D+irT6WgHS65oCEdAs3sTCKrJbXV9lChoBkdAcKGruIAOrmgHS5toCEdAs3sfa8Hv+nV9lChoBkdAc51lZ5iVjmgHS7xoCEdAs3tEMpgCwXV9lChoBkdAcyVNiYsunWgHS7NoCEdAs3ta2x6fJ3V9lChoBkdAc5PPy08eS2gHS99oCEdAs3tw1zhgmnV9lChoBkdAcb8zLwF1S2gHS5loCEdAs3uSHaewtHV9lChoBkdAc80Zpi7TUmgHS/JoCEdAs3uRemelK3V9lChoBkdAcew6XBxgiWgHS5JoCEdAs3uQxvegtnV9lChoBkdAbiCm8dxQzmgHS51oCEdAs3umGZeAu3V9lChoBkdAczBIQvpQlGgHS8NoCEdAs3vM/Z/Tb3V9lChoBkdAcloyRB/qgWgHS7JoCEdAs3vcPbwjMXV9lChoBkdAcfvNnXd0rGgHS9toCEdAs3vZ/Ue+23V9lChoBkdAcFlPqcEvCmgHS6ZoCEdAs3vk3fhuO3V9lChoBkdAcZTuNPxhD2gHS5VoCEdAs3vsR9PUKHV9lChoBkdAckTNRm9QGmgHS4toCEdAs3wl/WlMy3V9lChoBkdAcVzNlAeJYWgHS5BoCEdAs3wmIXTEznV9lChoBkdAceo544ZMtmgHS7RoCEdAs3wv/MnqmnV9lChoBkdAcl6lUIcBEWgHS59oCEdAs3w+TvAoHHV9lChoBkdAcJGCK77KrGgHS8BoCEdAs3xJeVs1sXV9lChoBkdAcbVkZaV2R2gHS5NoCEdAs3xbRZ2ZA3V9lChoBkdAcP7Jo0ygw2gHS55oCEdAs3xYOx0MgHV9lChoBkdAcSbDeTFERmgHS5poCEdAs3xX863iJnV9lChoBkdAc3sI9C/oJWgHS9ZoCEdAs3x1l2/zrnV9lChoBkdAc47CngpBomgHS9BoCEdAs3yLEDQqqnV9lChoBkdAcqZQXQ+lj2gHS5doCEdAs3y8yfthNXV9lChoBkdAcdV1YhdMTWgHS7JoCEdAs3zSHxjJ+3V9lChoBkdAcuRQ+EAYHmgHS+VoCEdAs3zbS/j81nV9lChoBkdAcOPHdoFmnWgHS6hoCEdAs3zhNHpbEHV9lChoBkdAcFf0hePaMGgHS5NoCEdAs3zx6u4gBHV9lChoBkdAc+Dw1zhgmmgHS7ZoCEdAs305uNxVAHV9lChoBkdAc6bSFoL5RGgHS+hoCEdAs31KEdvKl3V9lChoBkdAcdxQNCqp+GgHS75oCEdAs31Oecx0uHV9lChoBkdAcaet3fQ8fWgHS7RoCEdAs31gR02ca3V9lChoBkdAcrH6oESuhmgHS8ZoCEdAs31rsw+MZXV9lChoBkdAbyw/5ckdFWgHS6VoCEdAs32pZ7ojfXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 450,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
+ "_np_random": null
78
  },
79
  "n_envs": 64,
80
+ "n_steps": 700,
81
+ "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 32,
87
+ "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2808678b3323e3650d44ea86668304c9e40a4d0fb9bb43ace0268a7cb89ecd8c
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b79d47e691f97cd6c9753bcd04bb124f9433dec224010b628ea740ec89179000
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dcf89444d884e83eacd86646e539286e68baef82430b79b71f42a184af40a548
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdf68c7490201736ae24e6fbd31d44efb57207f46ca7a4eec790f4abb624ebee
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 290.4225620470544, "std_reward": 13.316538406313938, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T19:39:25.903665"}
 
1
+ {"mean_reward": 288.79024957736436, "std_reward": 20.886524625887784, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T21:16:46.876870"}