ppo-LunarLander-v2 / config.json
lilianz's picture
Upload PPO LunarLander-v2 trained agent
beb4692
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F74121B5E0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F74121B670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F74121B700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F74121B790>", "_build": "<function ActorCriticPolicy._build at 0x000001F74121B820>", "forward": "<function ActorCriticPolicy.forward at 0x000001F74121B8B0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001F74121B940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F74121B9D0>", "_predict": "<function ActorCriticPolicy._predict at 0x000001F74121BA60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F74121BAF0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F74121BB80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F74121BC10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001F74121E600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2016000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704447882488814100, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAE3VjT75T4I+BSbavna6Eb9ExRw+w3WPvgAAAAAAAAAATdFsvYXj7rktN702jTUnsVMJWruDS921AACAPwAAgD+NRcW9TSEGP9P6EL6lIDe/JvE0vvNN7r0AAAAAAAAAANNGZD60dPu8voYwutDYvziZMlq+xcFmOQAAgD8AAIA/ZvL4Oyk4S7pjyxC0AklWrXBbRzpH4p8zAACAPwAAgD8mlG8+pzqJPxRsxD4wSiC/0IPOPiap4z0AAAAAAAAAAHpMSL7xCo0/NgW+vpNYK7+ko1S+9CUtvgAAAAAAAAAArX8cvqc5jz82Duq+tV0nvxZuTr6NXk6+AAAAAAAAAADmZp09fmuDPwv55D0U3GS/1FLePW82iD0AAAAAAAAAAObQdL3OH7o9v0afPdp7z76I7ri9tR2FPQAAAAAAAAAADX2sPc/cFj0yXFS+PH2pvgvaCr24NPO8AAAAAAAAAACGERS+jycNvAJIk7uKHye6TeVnPSLE8joAAIA/AACAP4B87L0hjIi8SKhBPiRrXL3rBBq9zn2uvgAAgD8AAIA/2lW8vaiNnz7VZ+U7aRsCvwoQgb3Hg5I9AAAAAAAAAADN2yU9B8WxPu5yub2SPBC/96uIPRf2Mb0AAAAAAAAAAJqUobz2OEm6J2WcvWPy9LJHkX67w2PXMwAAgD8AAIA/ZkGYPCnEXrrkIEq4/D8ys3N8Abvzym03AACAPwAAgD8zkx68OETEu8bpHLy//Xs8NaMxPV27WL0AAIA/AACAPzpqFb6PxCG8ROIjuwMq6blAnIg9G0+lOgAAgD8AAIA/APjWu1JonLmcJxe+/Vj3vX8kMbxHBbo+AACAPwAAAAAa7mO9eGHLPNG4Iz6GKC2+UmmWvNpnhz0AAAAAAAAAAAD4mbu4Ppu53cxkueQBWLRsZjg7FNKDOAAAgD8AAIA/ACr4POx5yrla0l20CfoDL9vxqTv324kzAACAPwAAgD+zS1y94eScumxWgrNQ424vYKKNuOnavjMAAIA/AACAP02XHT3U9LY/TmKgPnIuor0ekgC7dhTdPAAAAAAAAAAAzSypPOKLSD/WDKw9m/w7v0Rcpj3+3ae8AAAAAAAAAACT3wm+IvJ0P3is5r5/eV6/hx4jvrb5W74AAAAAAAAAAEAK4j23On4/CE1NPlLpS79ZFVg+CATOPQAAAAAAAAAAgLI0PQokMTw0Cyi+VeuavibMmb0QyVS8AAAAAAAAAAD9C5o+YQYdP4aKzr0Tp/++OxamPrL7Ob4AAAAAAAAAAMB75D1xqFu7GzdnvkefCL7h50q8tSsyPgAAgD8AAAAA5hCYPZ/E+ruO83K+NOwjvWViCT327Ac+AACAPwAAgD8NZra9JH42PFvXXz22ioy+riU5vYI9az0AAAAAAAAAAGbGnTsqgOY+q+jsOl9qR7/8sWE9XOy4vAAAAAAAAAAA+m42vpT4xj4BSxs94Pb8vrSbL77jShs+AAAAAAAAAADaY7i9PAW3P1tm376y4Va+t+kFvid3Ib4AAAAAAAAAAEaxdD5cba0/DUwaPxm/Br+yl5I+B0iZPgAAAAAAAAAAAAr6vBewtT9ahhi/uhy4PJcLgjw2Nw+8AAAAAAAAAAAAuS09XMMhuiIVir0UeQYyZXyQOxXX+7MAAIA/AACAP4Pgc77HyBs/E3oDPNIYAb+jsmq+e0QqPQAAAAAAAAAAAGGevVwLKLqgc988vxORvI7Ylbp1zH29AAAAAAAAgD/aIQ2+XJV7P0reEr4TiV6/abWivWtRX70AAAAAAAAAADMRGbwU6Ky62hqRt7Y/grIWwze5q1ymNgAAgD8AAIA/jXuXPaQ1Ubvgh7O9vFuVPMObpDw1n3+9AACAPwAAAABNIsI9yKGEO47MVL7g0gK+KA5KPAseGzwAAAAAAAAAAE058b3hXKO60E7qN0Yi4TMvzfq5zDkItwAAgD8AAIA/XceDPiLWBj9Uh8m9hlkJv8pamD5HyUC+AAAAAAAAAABmt2K99qxTun0FZDzZr0a2BloMus0EP7UAAIA/AACAP+bWXr2ZB4s/vj3XvfQkYr9jzfm8OBtavQAAAAAAAAAAsyQzvcyxrj8tIMG+G7KjvmRthLxok9e9AAAAAAAAAACFZ4a+eE2BPievsD6mJ76+qAzBvS4DET4AAAAAAAAAACASBj66lAY/4Wq/vKueI79Uwjw+3FqXvQAAAAAAAAAAcvaBvhrQLz9xApa+L6gnvysf1r4Y0em8AAAAAAAAAAATAys+61QMP24BKb6tEza/bQsUPlNd/L0AAAAAAAAAAG1XEL7F7S4/8446vvW1N7+IN22+CumQvQAAAAAAAAAATcfjvU08ND6jv5O8cHG8vrH5yb1m6Ei8AAAAAAAAAAAmqAK+Mp+yPxAu+r7Sf7i+2UQyvuPd6r0AAAAAAAAAAGY5sb4Q2HU/i4GavZybEr+nNLa+kjSZPQAAAAAAAAAAswAePdJLvbsuFgq+G7z9PDvUHj21w9K9AACAPwAAgD8z5IK8tBezPyv5xb7/Bi6+EDICPOvhpLwAAAAAAAAAAOYlQL3DY207TmZdPib4Qb4VNCO9ntTzPQAAAAAAAAAAmnujPK7FpbpnfyK+efktttdDGbldSJo1AACAPwAAgD8NRrM9hTPkueUHkbpuI4y3stA9uy1h3zcAAAAAAAAAAM2EN70xf64/D60evzGjw77ODHM8/Q9EvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHByoqLCN0iMAWyUS6OMAXSUR0CnJ+4uscQzdX2UKGgGR0Bz6S1SflIVaAdLxGgIR0CnKBmACnxbdX2UKGgGR0BzVnNdJJ5FaAdL22gIR0CnKDy9du50dX2UKGgGR0By1bb/Ot4iaAdL0mgIR0CnKFVWjoIOdX2UKGgGR0BzT4jiXIEKaAdL72gIR0CnKGNorWiDdX2UKGgGR0BwGM61b7j1aAdLmWgIR0CnKGjbzshQdX2UKGgGR0BGmbu+h4+saAdLiWgIR0CnKG0wi7kGdX2UKGgGR0ByHnZnL7oCaAdLwmgIR0CnKIZH3DekdX2UKGgGR0BNo8Y64lQeaAdLdmgIR0CnKJZn13+udX2UKGgGR0BxjT16E8JVaAdLtWgIR0CnKJZf2K2sdX2UKGgGR0BxGsRlHz6KaAdLrmgIR0CnKJ09hZyNdX2UKGgGR0BvOuhGpda/aAdLnmgIR0CnKJuwHJLedX2UKGgGR0Bxe3UVi4KAaAdLwWgIR0CnKJmiHqNZdX2UKGgGR0ByzvDm8ujAaAdL0GgIR0CnKJ9E1EVndX2UKGgGR0BxH5Yr8R+SaAdLtWgIR0CnKLDiOvMbdX2UKGgGR0BwP/q3VkMDaAdLpmgIR0CnKK8kD6nBdX2UKGgGR0Bxla4c3l0YaAdLxWgIR0CnKOzHKfWddX2UKGgGR0BzTmFsYVIqaAdLwWgIR0CnKPLr5ZbIdX2UKGgGR0Bzov8n/kvLaAdL02gIR0CnKQ+QuEmIdX2UKGgGR0Bwj+7CiypraAdLt2gIR0CnKQ+P7vXtdX2UKGgGR0BwT27jDKoyaAdLpWgIR0CnKUe7cwg1dX2UKGgGR0BwkKILw4KhaAdLpGgIR0CnKU5c1O0tdX2UKGgGR0Bvl/j4pMHsaAdLrGgIR0CnKVy6MBIXdX2UKGgGR0Bws5PCVKPGaAdLqmgIR0CnKWxbr1M/dX2UKGgGR0ByfmsaKk2xaAdLx2gIR0CnKX67dznzdX2UKGgGR0Bzp4OQQtjDaAdL42gIR0CnKX8oYvWZdX2UKGgGR0B0CT71qWTpaAdLu2gIR0CnKX6xX4j9dX2UKGgGR0BxpBPqLS/kaAdLk2gIR0CnKYfe1rqMdX2UKGgGR0Bx5rYnOSntaAdL6mgIR0CnKYdat9x7dX2UKGgGR0Byea0tyxRmaAdL1WgIR0CnKaZqmCRPdX2UKGgGR0Bu6W74BV+7aAdLvGgIR0CnKbBb4agmdX2UKGgGR0BzBenZTQ3QaAdL52gIR0CnKbV6mfoSdX2UKGgGR0BxQQZccENfaAdLx2gIR0CnKdIgmqo7dX2UKGgGR0ByDmXLNfPYaAdL7mgIR0CnKdFNL128dX2UKGgGR0Bv4vi5uqFRaAdLsWgIR0CnKeqmKqGUdX2UKGgGR0BxMXH4oJAuaAdLvWgIR0CnKe+WfK6ndX2UKGgGR0BzjT876pHaaAdL2WgIR0CnKiWFnIyTdX2UKGgGR0BxePWAf+0gaAdLimgIR0CnKjJSrHU+dX2UKGgGR0BzBENd7fHhaAdL9WgIR0CnKkjaGpMpdX2UKGgGR0ByHu2F36hyaAdL3GgIR0CnKlKUu+RHdX2UKGgGR0Bwzk5QxesxaAdLmGgIR0CnKlGHYYixdX2UKGgGR0Bzy9mQKa5PaAdL8mgIR0CnKmJ9RaX8dX2UKGgGR0By9rX4CZF5aAdL82gIR0CnKqIHLRrrdX2UKGgGR0BxF3ZxrBTGaAdLtGgIR0CnKrE1/DtPdX2UKGgGR0ByV+qrBCUpaAdLvGgIR0CnKrCm2sq8dX2UKGgGR0B0UBdLQHAzaAdLwWgIR0CnKrfdyksSdX2UKGgGR0BwPdEroW56aAdLpWgIR0CnKt4/FBIGdX2UKGgGR0Bx+p/MGHHnaAdL9mgIR0CnKyI3rD64dX2UKGgGR0ByqZMfzSThaAdL5mgIR0CnKyREWqLkdX2UKGgGR0BxgnbDdgv2aAdLtmgIR0CnK1sguAZsdX2UKGgGR0BDllSjxkNGaAdLYWgIR0CnK3bwBo25dX2UKGgGR0ByhB41P3zuaAdLtmgIR0CnK4XDWK/EdX2UKGgGR0BwoCuX/o7naAdLs2gIR0CnK5YrSVnmdX2UKGgGR0ByVGlxffGdaAdLzmgIR0CnK6a+FlCkdX2UKGgGR0BwiX2oNutPaAdLrWgIR0CnK6b9If8udX2UKGgGR0Bw3r+YMOPOaAdL02gIR0CnK7gskIHDdX2UKGgGR0BxYf6+FlCkaAdLvGgIR0CnK7cw5/9YdX2UKGgGR0Bz84RjBl+WaAdLwGgIR0CnK9UUfxMGdX2UKGgGR0Bx3ti4J/oaaAdLw2gIR0CnK9ttIkJKdX2UKGgGR0BwvTs5XEIgaAdLrmgIR0CnK+Nk4FRpdX2UKGgGR0Bw/r1zySV4aAdLx2gIR0CnK/7BGhEjdX2UKGgGR0ByRKs0YTCcaAdLz2gIR0CnLAStNi6QdX2UKGgGR0BzEuM1jy4GaAdL7WgIR0CnLBJv5xiodX2UKGgGR0Bu9Yrc0tROaAdLlWgIR0CnLBnpjc2zdX2UKGgGR0Bw9RR77bcoaAdLq2gIR0CnLD01Q66rdX2UKGgGR0Byd87uDzy0aAdLsmgIR0CnLDoqkM1CdX2UKGgGR0BwosLgGbCraAdLq2gIR0CnLEQS8J2MdX2UKGgGR0Bw5FPLxI8RaAdLsGgIR0CnLFwob4rSdX2UKGgGR0BvlImu1WsBaAdLt2gIR0CnLH17Y02tdX2UKGgGR0BxEECtA9mpaAdLpGgIR0CnLIWv0RODdX2UKGgGR0BwbIYBNmDlaAdLv2gIR0CnLKT6BRQ8dX2UKGgGR0ByH11eSjgyaAdLlmgIR0CnLLHHWBjGdX2UKGgGR0BxxFcKPXCkaAdLpmgIR0CnLQSl3yI6dX2UKGgGR0Bx9zlcQiA2aAdLumgIR0CnLQOUt7KJdX2UKGgGR0By8dqN6w+uaAdL0GgIR0CnLQm5tm+TdX2UKGgGR0BzBIHt4RmLaAdL1mgIR0CnLRmZuyeJdX2UKGgGR0Bz+gBuGbkPaAdLzmgIR0CnLRjHn2ZidX2UKGgGR0ByxfMpw0fpaAdLs2gIR0CnLRgVoHs1dX2UKGgGR0Bwbu+K0lZ6aAdL3WgIR0CnLR7w8W9EdX2UKGgGR0BzJfi4rjHXaAdL7WgIR0CnLVcDr7fpdX2UKGgGR0BxF6xQizLPaAdLrmgIR0CnLV4u9OARdX2UKGgGR0BykZradtl7aAdL52gIR0CnLVup0fYBdX2UKGgGR0BzikWdmQKbaAdNAAFoCEdApy16ZhKDkHV9lChoBkdAczIrU9ZA6mgHS+JoCEdApy2IBDG96HV9lChoBkdAcYrvc8DB/WgHS/VoCEdApy2Yqd6LO3V9lChoBkdAcSGLApKBd2gHS91oCEdApy2sGRmseXV9lChoBkdAcRTMH8jzI2gHS6JoCEdApy2totcv/XV9lChoBkdAcTcJAdGRWGgHS7xoCEdApy2103fhuXV9lChoBkdAb+C3RXwLE2gHS5JoCEdApy25HskY43V9lChoBkdAcOJZkCmuT2gHS8doCEdApy2+hf0Eo3V9lChoBkdAcWN/x2B8QmgHS7toCEdApy3SBf8dgnV9lChoBkdAcugdEb5uZWgHS8loCEdApy3+56MR6HV9lChoBkdAcm0tl7MPjGgHS99oCEdApy4Nb3XZoXV9lChoBkdAc0+0UGmk32gHS9RoCEdApy4LZFocrHV9lChoBkdAczPgfEGZ/mgHS8doCEdApy4sXcgyM3V9lChoBkdAdDMGBFuvU2gHS+RoCEdApy5VYB/7SHV9lChoBkdAccuHi3ocJmgHS65oCEdApy5X2oNutXV9lChoBkdAcQOENvwVkGgHS79oCEdApy5qzJIUanV9lChoBkdAc7zy9mHxjWgHS7RoCEdApy52ndfsu3V9lChoBkdAcvlZML4N7WgHS+9oCEdApy56gbp/w3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 450, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 700, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVjAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFxDOlxVc2Vyc1xldmFcQXBwRGF0YVxSb2FtaW5nXFB5dGhvblxQeXRob24zOVxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFxDOlxVc2Vyc1xldmFcQXBwRGF0YVxSb2FtaW5nXFB5dGhvblxQeXRob24zOVxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.22000-SP0 10.0.22000", "Python": "3.9.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.26.2", "Cloudpickle": "2.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}