{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc39ac5d870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc39ac5d900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc39ac5d990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc39ac5da20>", "_build": "<function ActorCriticPolicy._build at 0x7cc39ac5dab0>", "forward": "<function ActorCriticPolicy.forward at 0x7cc39ac5db40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc39ac5dbd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc39ac5dc60>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc39ac5dcf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc39ac5dd80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc39ac5de10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc39ac5dea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc3a3df0840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5001304, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692629405413708352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1ut7yD4Bk/ql5HvVrAH79HBZi90J2VvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00026079999999994996, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC0l4oqkM2MAWyUS+GMAXSUR0DByJwecQRPdX2UKGgGR0BxJ9Fz+3pfaAdNDAFoCEdAwcj7GEwnIHV9lChoBkdAcL1Cv5gw5GgHS81oCEdAwckhajesP3V9lChoBkdAcE+ktmL9/GgHS7ZoCEdAwclFfmcOLHV9lChoBkdAceZ+ee4Cp2gHS7NoCEdAwcloMm4RVnV9lChoBkdAQJolY2bXpWgHS3BoCEdAwcl8w6hg3XV9lChoBkdAcQWFHavicWgHS8toCEdAwcmkn5SFXnV9lChoBkdAcdI9Hc1wYWgHS79oCEdAwcnTTx5LRXV9lChoBkfAIhtlI3BHkWgHS5FoCEdAwcn2X+l0o3V9lChoBkdAcIMhhpg1FmgHS8FoCEdAwcojgv114nV9lChoBkdAcMOuNxVAA2gHS8hoCEdAwcpU7L+xW3V9lChoBkdAcXFeLehwl2gHTR8BaAhHQMHKnJe/pMZ1fZQoaAZHQHI7uHFglWxoB0uzaAhHQMHLBrL6k691fZQoaAZHQHEyvI8yN4toB0vOaAhHQMHLQZle4Td1fZQoaAZHQG3dMByS3b5oB0vGaAhHQMHLeaWHDaZ1fZQoaAZHQHAoHeBQN1BoB00gAWgIR0DBy8lzIV/MdX2UKGgGR0A45wx33YcvaAdLrWgIR0DBy/iwjdHldX2UKGgGR0BwZp1oxpL3aAdL6GgIR0DBzDlRLsa9dX2UKGgGR0BuDQYrJ8v3aAdLuGgIR0DBzG1GI9DAdX2UKGgGR0BhQ3GwRoRJaAdN6ANoCEdAwc1ORMewLXV9lChoBkdAcbZvFFUhm2gHS6FoCEdAwc1r/FR51XV9lChoBkdAcDlJHy3CsWgHTSYBaAhHQMHNo9DYywh1fZQoaAZHQDAItkFwDNhoB0uIaAhHQMHNvN+9all1fZQoaAZHQB4a3iJfplloB0uwaAhHQMHN3Qswtap1fZQoaAZHQHA1CqIacZtoB0vHaAhHQMHOAPQfIS11fZQoaAZHQHH0mEf1YhdoB0vYaAhHQMHOKYQBgeB1fZQoaAZHwCwjDKoybhFoB0uNaAhHQMHOQ+CCjDd1fZQoaAZHQGtWMTFl05loB0v/aAhHQMHOdlJYkmh1fZQoaAZHQFvPYlIEr5JoB03oA2gIR0DBz2LmlqJudX2UKGgGR0ByrJd1MdtEaAdLpmgIR0DBz4L8pCrtdX2UKGgGR0ByiNpeu3c6aAdLwGgIR0DBz6eq7yxzdX2UKGgGR0BW3IBeXzDoaAdN6ANoCEdAwdCHLq2SdXV9lChoBkdAcXuF9KEnLWgHS7ZoCEdAwdCpQfp2U3V9lChoBkdAcVH08eS0SmgHS69oCEdAwdDJHEMspXV9lChoBkdAbw6naWX1J2gHS91oCEdAwdDw/r0J4XV9lChoBkdAcZqV1Oj7AWgHS75oCEdAwdEUh6By0nV9lChoBkdAb6FiNKh+OWgHS7ZoCEdAwdE3gWJrL3V9lChoBkdAcUNoL5RCQmgHS6toCEdAwdFWEOAiFHV9lChoBkdAbJbP5YYBNmgHS7JoCEdAwdF72nsLOXV9lChoBkdAbtvuAI6bOWgHS8loCEdAwdGsdy1eB3V9lChoBkdAbdm20iQkomgHTSwBaAhHQMHSJfAbhm51fZQoaAZHQDzgQPI4lyBoB0t0aAhHQMHSQPvKEFp1fZQoaAZHQHCvPrrxAjZoB0vvaAhHQMHSfXN9ph51fZQoaAZHQHD1z5Kvmo1oB0vOaAhHQMHStbQ9ic51fZQoaAZHQGEl0D2alUJoB03oA2gIR0DB08+0/nnudX2UKGgGR0Bxks8nuy/saAdLq2gIR0DB0/6R6nivdX2UKGgGR0BuuFxQzk6taAdLw2gIR0DB1DOyquKXdX2UKGgGR0A1lVzp5eJIaAdLZ2gIR0DB1GwjMV1wdX2UKGgGR0Br5T/uLJjlaAdNCwFoCEdAwdSfxiobXHV9lChoBkdAXz0mrsByS2gHTegDaAhHQMHVZHMMZxd1fZQoaAZHQG/dKlpGnXNoB0uzaAhHQMHVhb6guh91fZQoaAZHQG4sZYHPeHloB0u5aAhHQMHVqB4D9wZ1fZQoaAZHQHL8LQ1JlJ9oB0vLaAhHQMHVzkQwsXl1fZQoaAZHQGP6KxTsIE9oB03oA2gIR0DB1rGAoXsPdX2UKGgGR0BvOn2ys0YTaAdLuWgIR0DB1tWpjtojdX2UKGgGR0BxTKnBLwnZaAdLpGgIR0DB1vOK8+RpdX2UKGgGR0Bt6PlXA/LUaAdLvWgIR0DB1xYqLCN0dX2UKGgGR0BCDi/O+qR2aAdLs2gIR0DB1zbKHO8kdX2UKGgGR0BiWL0xubZwaAdN6ANoCEdAwdgVpIMBqHV9lChoBkdAcE5xZuAI6mgHS9RoCEdAwdg7y925hHV9lChoBkdAcJTbqQiiZmgHS75oCEdAwdhf54W1t3V9lChoBke/8zybx3FDOWgHS4poCEdAwdh5W6K+BnV9lChoBkdAckKl4keIVWgHS8ZoCEdAwdifnbqQinV9lChoBkdAcFaccENe+mgHS6loCEdAwdi/k+X7cnV9lChoBkdAcSOR/ViF02gHS6toCEdAwdjfKyv9tXV9lChoBkdAbgeVII4VAWgHS8FoCEdAwdkCBas6rHV9lChoBkdAcINz3yqdYmgHS9FoCEdAwdlb7SiM53V9lChoBkdAb7Va7mMfimgHS7loCEdAwdmSFSKm9HV9lChoBkdAb3g5/9YOlWgHS8toCEdAwdnCGEf1YnV9lChoBkdAbgiw4bS7XmgHS71oCEdAwdnyhmoR7XV9lChoBkdAXqJoK2KEWmgHTegDaAhHQMHbAtnf2sd1fZQoaAZHQG54gMtsen1oB0vdaAhHQMHbQVuR9w51fZQoaAZHQHDmso+fRNRoB0vkaAhHQMHbv+SSvDB1fZQoaAZHQHBtP4ZdfLNoB0u5aAhHQMHb9CBf8dh1fZQoaAZHQG+R42Kl54ZoB03iAWgIR0DB3GBzijtYdX2UKGgGR0BiB4kVvddnaAdN6ANoCEdAwd0f+5vtMXV9lChoBkdAchlaPS2H+WgHS/poCEdAwd1PvRZ2ZHV9lChoBkdAOg2qYJE6UGgHS21oCEdAwd2JR4yGjHV9lChoBkdAb90ubI91U2gHS9poCEdAwd2x4GD+SHV9lChoBkdAbx9nh86V+2gHS8poCEdAwd3XvvSc9XV9lChoBkdAbiWjqOcUd2gHS8FoCEdAwd38bbUPQXV9lChoBkdAXq/FbVz6rWgHTegDaAhHQMHewr5IpYt1fZQoaAZHQHCA9ALRa5hoB0ulaAhHQMHe600WM0h1fZQoaAZHQHCTjw6QvHtoB0vwaAhHQMHfWqNp/PR1fZQoaAZHv/jzqKP4mC1oB0tiaAhHQMHfc7rcCYF1fZQoaAZHQHCcqPXCj1xoB0vMaAhHQMHfp6XBxgl1fZQoaAZHQHHMJ5AyEctoB0vGaAhHQMHf2+qrBCV1fZQoaAZHQG3L6ZhKDkFoB003AWgIR0DB4DNopQUIdX2UKGgGR0BxSIbZOBUaaAdLv2gIR0DB4GjM/yG0dX2UKGgGR0BuORDmbLEDaAdLw2gIR0DB4J+1rqMWdX2UKGgGR0BhwyrPt2LYaAdN6ANoCEdAweH801qFiHV9lChoBkdAbxXzNliBoWgHS7VoCEdAweIqUiY9gXV9lChoBkdAb8SXwb2lEmgHS69oCEdAweJURe1KG3V9lChoBkdAcPDr2g398GgHS9JoCEdAweKKSs8xK3V9lChoBkdAbwydy1eBx2gHS9ZoCEdAweLE19fCynV9lChoBkdAbNPO0svqT2gHS7JoCEdAweL3P2PDHnV9lChoBkdAb0k+evpyImgHS8poCEdAweMuIToMa3V9lChoBkdAa/cn9ehPCWgHS+doCEdAweNvZyuIRHV9lChoBkdAcKyxqwhW52gHS9hoCEdAweOrtb9qDnV9lChoBkdAcA9mcOLBK2gHS8NoCEdAwePjsHjZMHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9884, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGAMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQMI1XcaU+CqGB14baxCX8OYwDaW5jlIoQfZv8O2NZEMnjspvAyKQYM3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVggEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRlWmvdVhjrTJ1cJrBXAHcmACMA2luY5SKEckvboI0Q6ns/KB/zZznL/cAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUSmfU0BJ1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |