File size: 1,208 Bytes
2702ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928fed6
 
2702ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
language: protein
tags:
- protein
datasets:
- uniref-100
---

# RITA-XL

RITA is a family of autoregressive protein models, developed in collaboration between Lighton, Harvard and Oxford.



Model | #Params | d_model | layers | lm loss uniref-100
--- | --- | --- | --- | --- | 
[Small](https://huggingface.co/lightonai/RITA_s) | 85M  | 768 | 12 | 2.31
[Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01
[Large](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82
[**XLarge**](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70 



# Usage 

Instantiate a model like so:

    from transformers import AutoModel, AutoModelForCausalLM
    model = AutoModelForCausalLM.from_pretrained("Seledorn/RITA_xl, trust_remote_code=True")
    tokenizer = AutoTokenizer.from_pretrained("Seledorn/RITA_xl")

for generation use we support pipelines:
   
   
    rita_gen = pipeline('text-generation', model=model, tokenizer = tokenizer)
    sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2)
    for seq in sequences:
        print(f"seq: {seq['generated_text'].replace(' ', '')}")