File size: 10,480 Bytes
49554ce 2ba18e8 49554ce 2ba18e8 49554ce 02601cf a6f9751 02601cf cb119d0 02601cf a521acc b5ad17c 02601cf bb5358d 02601cf b65414a 9c6e88e b65414a 02601cf 49554ce 2ba18e8 49554ce 358948f 49554ce 4990ff6 49554ce 65972c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
---
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: lightblue/suzume-llama-3-8B-multilingual
results: []
---
<p align="center">
<img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
</p>
# Suzume
This Suzume 8B, a multilingual finetune of Llama 3 ([meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)).
Llama 3 has exhibited excellent performance on many English language benchmarks.
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in other languages.
We have fine-tuned Llama 3 on almost 90,000 multilingual conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in more languages.
Please feel free to comment on this model and give us feedback in the Community tab!
# How to use
The easiest way to use this model on your own computer is to use the [GGUF version of this model (lightblue/suzume-llama-3-8B-multilingual-gguf)](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-gguf) using a program such as [jan.ai](https://jan.ai/) or [LM Studio](https://lmstudio.ai/).
If you want to use this model directly in Python, we recommend using vLLM for the fastest inference speeds.
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/suzume-llama-3-8B-multilingual")
messages = []
messages.append({"role": "user", "content": "Bonjour!"})
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Evaluation scores
We achieve the following MT-Bench scores across 6 languages:
| | **meta-llama/Meta-Llama-3-8B-Instruct** | **lightblue/suzume-llama-3-8B-multilingual** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** |
|-----------------|-----------------------------------------|----------------------------------------------|-----------------------------------|-------------------|
| **German** π©πͺ | NaN | 7.26 | 6.99 | 7.68 |
| **French** π«π· | NaN | 7.66 | 7.29 | 7.74 |
| **Japanese** π―π΅ | NaN | 6.56 | 6.22 | 7.84 |
| **Russian** π·πΊ | NaN | 8.19 | 8.28 | 7.94 |
| **Chinese** π¨π³ | NaN | 7.11 | 6.97 | 7.55 |
| **English** πΊπΈ | 7.98 | 7.73 | 7.92 | 8.26 |
We observe minimal degredation of Llama 3's English ability while achieving best-in-class multilingual abilities compared to the top rated 7B model ([Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta)) on the [Chatbot Arena Leaderboard](https://chat.lmsys.org/?leaderboard).
[Here is our evaluation script.](https://drive.google.com/file/d/15HPn7452t8LbTD9HKSl7ngYYWnsoOG08/view?usp=sharing)
# Training data
We train on three sources of data to create this model:
* [lightblue/tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4) - 76,338 conversations
* A diverse dataset of initial inputs sampled from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) and then used to prompt `gpt-4-0125-preview`
* [megagonlabs/instruction_ja](https://github.com/megagonlabs/instruction_ja) - 669 conversations
* A hand-edited dataset of nearly 700 Japanese conversations taken originally from translations of the [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) dataset.
* [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json) - 6,206 conversations
* Multilingual conversations of humans talking to GPT-4.
<details><summary>We prepare our data like so:</summary>
```python
import pandas as pd
from datasets import Dataset, load_dataset, concatenate_datasets
### Tagengo
gpt4_dataset = load_dataset("lightblue/tagengo-gpt4", split="train")
gpt4_dataset = gpt4_dataset.filter(lambda x: x["response"][1] == "stop")
####
### Megagon
megagon_df = pd.read_json(
"https://raw.githubusercontent.com/megagonlabs/instruction_ja/main/data/data.jsonl",
lines=True,
orient="records"
)
role_map = {"user": "human", "agent": "gpt"}
megagon_df["conversations"] = megagon_df.utterances.apply(lambda x: [{"from": role_map[y["name"]], "value": y["text"]} for y in x])
megagon_df["language"] = "Japanese"
megagon_df = megagon_df[["conversations", "language"]]
megagon_dataset = Dataset.from_pandas(df)
###
### Openchat
openchat_df = pd.read_json("https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json?download=true")
openchat_df["conversations"] = openchat_df["items"]
openchat_dataset = Dataset.from_pandas(openchat_df)
###
dataset = concatenate_datasets([gpt4_dataset, megagon_dataset, openchat_dataset])
dataset = dataset.filter(lambda x: not any([y["value"] is None for y in x["conversations"]]))
dataset.select_columns(["conversations"]).to_json("/workspace/llm_training/axolotl/llama3-multilingual/tagengo_openchat_megagon.json")
```
</details>
<br/>
# workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the above described dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6595
## Training procedure
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/llm_training/axolotl/llama3-multilingual/tagengo_openchat_megagon.json
ds_type: json # see other options below
type: sharegpt
conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual/prepared_tagengo_openchat_megagon
val_set_size: 0.01
output_dir: /workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: wandb_project
wandb_entity: wandb_entity
wandb_name: wandb_name
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
<details><summary>Note - we added this Llama 3 template to fastchat directly as the Llama 3 chat template was not supported when we trained this model.</summary>
```python
from fastchat.conversation import Conversation
from fastchat.conversation import register_conv_template
from fastchat.conversation import SeparatorStyle
register_conv_template(
Conversation(
name="llama-3",
system_template="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}",
roles=("<|start_header_id|>user<|end_header_id|>\n", "<|start_header_id|>assistant<|end_header_id|>\n"),
sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
sep="<|eot_id|>",
stop_token_ids=[128009],
stop_str="<|eot_id|>",
)
)
```
</details><br>
### Training hyperparameters
This model was trained using 4 x A100 (80GB) for roughly 2.5 hours.
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1894 | 0.0 | 1 | 1.0110 |
| 0.8493 | 0.2 | 73 | 0.7057 |
| 0.8047 | 0.4 | 146 | 0.6835 |
| 0.7644 | 0.6 | 219 | 0.6687 |
| 0.7528 | 0.8 | 292 | 0.6615 |
| 0.7794 | 1.0 | 365 | 0.6595 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
# Developer
Peter Devine - ([ptrdvn](https://huggingface.co/ptrdvn))
|