File size: 7,457 Bytes
f0eba3f
 
884eb34
 
 
f0eba3f
 
 
 
 
 
 
 
884eb34
 
 
 
 
 
86ec205
 
884eb34
 
 
 
 
3439dd3
884eb34
 
 
34b8414
 
884eb34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb2510
 
 
 
80e1691
 
acb2510
 
80e1691
 
 
 
 
 
 
 
 
 
acb2510
 
 
 
 
 
 
 
 
 
 
884eb34
f0eba3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ec205
 
 
 
 
 
3306e6b
 
 
 
 
86ec205
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE

base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: workspace/llm_training/axolotl/llama3-ja/output_openchat_megagon_lbgpt4_ja_8B_instruct
  results: []
---

<p align="center">
  <img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
</p>

# Suzume

[[Paper](https://arxiv.org/abs/2405.12612)] [[Dataset](https://huggingface.co/datasets/lightblue/tagengo-gpt4)]

This Suzume 8B, a Japanese finetune of Llama 3.

Llama 3 has exhibited excellent performance on many English language benchmarks. 
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in Japanese.

We have fine-tuned Llama 3 on more than 3,000 Japanese conversations meaning that this model has the intelligence of Llama 3 but has the added ability to chat in Japanese.

Please feel free to comment on this model and give us feedback in the Community tab!

We will release a paper in the future describing how we made the training data, the model, and the evaluations we have conducted of it.

# How to use

You can use the original trained model with vLLM like so:

```python
from vllm import LLM, SamplingParams

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="lightblue/suzume-llama-3-8B-japanese")

prompts = [
  "東京のおすすめの観光スポットを教えて下さい",
]

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

# Evaluation scores

We find that this is the best performing model in the 7/8B class of LLMs on a multitude of Japanese language benchmarks.

We calculate our Japanese evaluation scores using our [lightblue-tech/japanese_llm_eval](https://github.com/lightblue-tech/japanese_llm_eval) repo.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/2obyDbrjiNV3PGfwom6EI.png)

We also compare our Japanese model to our multilingual model using our [multilingual_mt_bench](https://github.com/Peter-Devine/multilingual_mt_bench/tree/main/fastchat/llm_judge) repo.

|                 | **lightblue/suzume-llama-3-8B-japanese** | **lightblue/suzume-llama-3-8B-multilingual** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** |
|-----------------|------------------------------------------|----------------------------------------------|-----------------------------------|-------------------|
| **Japanese 🇯🇵** | 6.24                                     | 6.56                                         | 6.22                              | 7.84              |

Here, we find that our multilingual model outperforms our Japanese model on the Japanese MT-Bench benchmark, indicating that our multilingual model was able to generalize better to the Japanese MT-Bench benchmark from training on more data, even if that added data was not in Japanese.

Note - the discrepancy between the MT-Bench scores of the first and second evaluation of `lightblue/suzume-llama-3-8B-japanese` are due to the difference in system message of the two evaluation harnesses. The former's system message is in Japanese while the latter's is in English. 

# Training data

We train on three sources of data to create this model

* [megagonlabs/instruction_ja](https://github.com/megagonlabs/instruction_ja) - 669 conversations
    * A hand-edited dataset of nearly 700 conversations taken originally from translations of the [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) dataset.
* [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json) (Japanese conversations only) - 167 conversations
    * Conversations taken from humans talking to GPT-4
* lightblue/tagengo-gpt4 (Japanese prompts only) (Link coming soon!) - 2,482 conversations
    * Almost 2,500 diverse Japanese prompts sampled from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) and then used to prompt `gpt-4-0125-preview`

# Training config

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer  # PreTrainedTokenizerFast

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/llm_training/axolotl/llama3-ja/openchat_megagon_lbgpt4_ja.json
    ds_type: json # see other options below
    type: sharegpt
    conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-ja/prepared_openchat_megagon_lbgpt4_ja
val_set_size: 0.01
output_dir: /workspace/llm_training/axolotl/llama3-ja/output_openchat_megagon_lbgpt4_ja_8B_instruct

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: False

use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: openchat_megagon_lbgpt4_ja_8B_instruct

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
```

</details><br>


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.303         | 0.08  | 1    | 1.2664          |
| 1.4231        | 0.23  | 3    | 1.2409          |
| 1.1007        | 0.46  | 6    | 1.0264          |
| 1.0635        | 0.69  | 9    | 1.0154          |
| 1.0221        | 0.92  | 12   | 0.9555          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0

# How to cite

Please cite [this paper](https://arxiv.org/abs/2405.12612) when referencing this model.

```tex
@article{devine2024tagengo,
  title={Tagengo: A Multilingual Chat Dataset},
  author={Devine, Peter},
  journal={arXiv preprint arXiv:2405.12612},
  year={2024}
}
```

# Developer

Peter Devine - ([ptrdvn](https://huggingface.co/ptrdvn))