Text Generation
Transformers
PyTorch
Safetensors
English
gpt2
text-generation-inference
Inference Endpoints
lgaalves commited on
Commit
554f9b2
1 Parent(s): bfa144d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ - databricks/databricks-dolly-15k
6
+ - timdettmers/openassistant-guanaco
7
+ language:
8
+ - en
9
+ pipeline_tag: text-generation
10
+ ---
11
+
12
+
13
+
14
+ # GPT2_platypus-dolly-guanaco
15
+
16
+ **gpt2_platypus-dolly-guanaco** is an instruction fine-tuned model based on the GPT-2 transformer architecture.
17
+
18
+
19
+ ### Benchmark Metrics
20
+
21
+ | Metric | gpt2_platypus-dolly-guanaco | GPT-2 (base) |
22
+ |-----------------------|-------|-------|
23
+ | Avg. | - | 29.9 |
24
+ | ARC (25-shot) | - | 21.84 |
25
+ | HellaSwag (10-shot) | - | 31.6 |
26
+ | MMLU (5-shot) | - | 25.86 |
27
+ | TruthfulQA (0-shot) | - | 40.67 |
28
+
29
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
30
+
31
+ ### Model Details
32
+
33
+ * **Trained by**: Luiz G A Alves
34
+ * **Model type:** **gpt2_platypus-dolly-guanaco** is an auto-regressive language model based on the GPT-2 transformer architecture.
35
+ * **Language(s)**: English
36
+
37
+ ### How to use:
38
+
39
+ ```python
40
+ # Use a pipeline as a high-level helper
41
+ >>> from transformers import pipeline
42
+ >>> pipe = pipeline("text-generation", model="lgaalves/lgaalves/gpt2_platypus-dolly-guanaco")
43
+ >>> question = "What is a large language model?"
44
+ >>> answer = pipe(question)
45
+ >>> print(answer[0]['generated_text'])
46
+ ```
47
+
48
+ or, you can load the model direclty using:
49
+
50
+ ```python
51
+ # Load model directly
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2_open-platypus")
55
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2_open-platypus")
56
+ ```
57
+
58
+ ### Training Dataset
59
+
60
+ `lgaalves/gpt2_platypus-dolly-guanaco` trained using 3 datasets:
61
+ - [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
62
+ - [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
63
+ - [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)
64
+
65
+ ### Training Procedure
66
+
67
+ `lgaalves/gpt2_platypus-dolly-guanaco` was instruction fine-tuned using LoRA on 1 T4 GPU on Google Colab. It took about 1 hour to train it.
68
+
69
+
70
+ # Intended uses, limitations & biases
71
+
72
+ You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.