update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -45,33 +45,23 @@ The following hyperparameters were used during training:
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
-
| No log | 0.99 | 56 |
|
56 |
-
|
|
57 |
-
|
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
|
|
61 |
-
|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.7084 | 10.99 | 616 | 0.4917 | 0.85 |
|
66 |
-
| 0.2248 | 11.99 | 672 | 0.5181 | 0.83 |
|
67 |
-
| 0.2248 | 12.99 | 728 | 0.5342 | 0.87 |
|
68 |
-
| 0.2248 | 13.99 | 784 | 0.5473 | 0.86 |
|
69 |
-
| 0.2248 | 14.99 | 840 | 0.5961 | 0.86 |
|
70 |
-
| 0.0508 | 15.99 | 896 | 0.5873 | 0.86 |
|
71 |
-
| 0.0508 | 16.99 | 952 | 0.5756 | 0.86 |
|
72 |
-
| 0.0508 | 17.99 | 1008 | 0.5925 | 0.86 |
|
73 |
-
| 0.0508 | 18.99 | 1064 | 0.5922 | 0.87 |
|
74 |
-
| 0.0206 | 19.99 | 1120 | 0.5882 | 0.86 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6310
|
20 |
+
- Accuracy: 0.84
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| No log | 0.99 | 56 | 1.9996 | 0.4 |
|
56 |
+
| 2.0202 | 1.99 | 112 | 1.5102 | 0.51 |
|
57 |
+
| 2.0202 | 2.99 | 168 | 1.2698 | 0.67 |
|
58 |
+
| 1.289 | 3.99 | 224 | 1.0391 | 0.73 |
|
59 |
+
| 1.289 | 4.99 | 280 | 0.8988 | 0.75 |
|
60 |
+
| 0.8787 | 5.99 | 336 | 0.7758 | 0.82 |
|
61 |
+
| 0.8787 | 6.99 | 392 | 0.6896 | 0.83 |
|
62 |
+
| 0.6254 | 7.99 | 448 | 0.6936 | 0.81 |
|
63 |
+
| 0.6254 | 8.99 | 504 | 0.6433 | 0.84 |
|
64 |
+
| 0.4879 | 9.99 | 560 | 0.6310 | 0.84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|