Добавление обновлённого README.md без блоков <details>
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: oopsung/llama2-7b-koNqa-test-v1
|
4 |
+
tags:
|
5 |
+
- axolotl
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: d51cea0d-5ea2-4fed-9f18-0b8956498f04
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
16 |
+
<br>
|
17 |
+
|
18 |
+
# d51cea0d-5ea2-4fed-9f18-0b8956498f04
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.2858
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001013
|
42 |
+
- train_batch_size: 4
|
43 |
+
- eval_batch_size: 4
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 8
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 10
|
50 |
+
- training_steps: 200
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|
|
56 |
+
| 2.3512 | 0.0001 | 1 | 2.9002 |
|
57 |
+
| 2.1385 | 0.0032 | 50 | 2.3814 |
|
58 |
+
| 2.4998 | 0.0064 | 100 | 2.3346 |
|
59 |
+
| 1.9572 | 0.0096 | 150 | 2.3092 |
|
60 |
+
| 1.9981 | 0.0128 | 200 | 2.2858 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- PEFT 0.13.2
|
66 |
+
- Transformers 4.46.0
|
67 |
+
- Pytorch 2.5.0+cu124
|
68 |
+
- Datasets 3.0.1
|
69 |
+
- Tokenizers 0.20.1
|