leowang707
commited on
Commit
•
f9faf67
1
Parent(s):
d30789b
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/hubert-base-ls960
|
4 |
+
tags:
|
5 |
+
- audio-classification
|
6 |
+
- hubert
|
7 |
+
- esc50
|
8 |
+
- generated_from_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: hubert-esc50-finetuned-v2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# hubert-esc50-finetuned-v2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the ESC-50 dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 2.0479
|
24 |
+
- Accuracy: 0.445
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 10
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 3.5088 | 1.0 | 200 | 3.4844 | 0.0825 |
|
56 |
+
| 3.2062 | 2.0 | 400 | 3.1259 | 0.135 |
|
57 |
+
| 2.9114 | 3.0 | 600 | 2.9266 | 0.1325 |
|
58 |
+
| 2.7927 | 4.0 | 800 | 2.7796 | 0.1925 |
|
59 |
+
| 2.4747 | 5.0 | 1000 | 2.6559 | 0.2175 |
|
60 |
+
| 2.4665 | 6.0 | 1200 | 2.4073 | 0.3125 |
|
61 |
+
| 2.1922 | 7.0 | 1400 | 2.3220 | 0.355 |
|
62 |
+
| 2.0926 | 8.0 | 1600 | 2.1544 | 0.405 |
|
63 |
+
| 1.8655 | 9.0 | 1800 | 2.0781 | 0.4175 |
|
64 |
+
| 1.9552 | 10.0 | 2000 | 2.0479 | 0.445 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.40.2
|
70 |
+
- Pytorch 2.3.0+cu121
|
71 |
+
- Datasets 2.19.1
|
72 |
+
- Tokenizers 0.19.1
|