lemonteaa commited on
Commit
d234938
·
verified ·
1 Parent(s): a8b5ea6

Create gradio_demo.py

Browse files
Files changed (1) hide show
  1. src/gradio_demo.py +224 -0
src/gradio_demo.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from dataclasses import dataclass
4
+
5
+ import tiktoken
6
+
7
+ import safetensors.torch
8
+
9
+ tokenizer = tiktoken.get_encoding("gpt2")
10
+
11
+ import gradio as gr
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ # Define the GPTConfig dataclass
15
+ @dataclass
16
+ class GPTConfig:
17
+ vocab_size : int = 50304
18
+ n_layer : int = 12
19
+ n_head : int = 6 # head dim 128 suggested by @Grad62304977
20
+ n_embd : int = 768
21
+
22
+ # Define the Rotary class
23
+ class Rotary(torch.nn.Module):
24
+
25
+ def __init__(self, dim, base=10000):
26
+ super().__init__()
27
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
28
+ self.seq_len_cached = None
29
+ self.cos_cached = None
30
+ self.sin_cached = None
31
+
32
+ def forward(self, x):
33
+ seq_len = x.shape[1]
34
+ if seq_len!= self.seq_len_cached:
35
+ self.seq_len_cached = seq_len
36
+ t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
37
+ freqs = torch.outer(t, self.inv_freq).to(x.device)
38
+ self.cos_cached = freqs.cos().bfloat16()
39
+ self.sin_cached = freqs.sin().bfloat16()
40
+ return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
41
+
42
+ def apply_rotary_emb(x, cos, sin):
43
+ assert x.ndim == 4 # multihead attention
44
+ d = x.shape[3]//2
45
+ x1 = x[..., :d]
46
+ x2 = x[..., d:]
47
+ y1 = x1 * cos + x2 * sin
48
+ y2 = x1 * (-sin) + x2 * cos
49
+ return torch.cat([y1, y2], 3).type_as(x)
50
+
51
+ # Define the CausalSelfAttention class
52
+ class CausalSelfAttention(torch.nn.Module):
53
+
54
+ def __init__(self, config):
55
+ super().__init__()
56
+ self.n_head = config.n_head
57
+ self.n_embd = config.n_embd
58
+ self.head_dim = self.n_embd // self.n_head
59
+ assert self.n_embd % self.n_head == 0
60
+ self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
61
+ self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
62
+ self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
63
+ # output projection
64
+ self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
65
+ self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
66
+ self.rotary = Rotary(self.head_dim)
67
+ self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977
68
+
69
+ def forward(self, x, v1=None):
70
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
71
+ q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
72
+ k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
73
+ v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
74
+ if v1 is None:
75
+ v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
76
+ v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
77
+ cos, sin = self.rotary(q)
78
+ q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
79
+ q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
80
+ y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
81
+ y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
82
+ y = self.c_proj(y)
83
+ return y, v1
84
+
85
+ # Define the MLP class
86
+ class MLP(torch.nn.Module):
87
+
88
+ def __init__(self, config):
89
+ super().__init__()
90
+ self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
91
+ self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
92
+ self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
93
+
94
+ def forward(self, x):
95
+ x = self.c_fc(x)
96
+ x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
97
+ x = self.c_proj(x)
98
+ return x
99
+
100
+ # Define the Block class
101
+ class Block(torch.nn.Module):
102
+
103
+ def __init__(self, config):
104
+ super().__init__()
105
+ self.attn = CausalSelfAttention(config)
106
+ self.mlp = MLP(config)
107
+ self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.]))
108
+
109
+ def forward(self, x, v1, x0):
110
+ x = self.lambdas[0] * x + self.lambdas[1] * x0
111
+ x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1)
112
+ x = x + x1
113
+ x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
114
+ return x, v1
115
+
116
+ # Define the GPT class
117
+ class GPT(torch.nn.Module):
118
+
119
+ def __init__(self, config):
120
+ super().__init__()
121
+ self.config = config
122
+
123
+ self.transformer = torch.nn.ModuleDict(dict(
124
+ wte = torch.nn.Embedding(config.vocab_size, config.n_embd),
125
+ h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
126
+ ))
127
+ self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
128
+ self.lm_head.weight.data.zero_() # @Grad62304977
129
+
130
+ def forward(self, idx, targets=None, return_logits=True):
131
+
132
+ # forward the GPT model itself
133
+ x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
134
+ x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
135
+ x0 = x
136
+ v1 = None
137
+ for block in self.transformer.h:
138
+ x, v1 = block(x, v1, x0)
139
+ x = F.rms_norm(x, (x.size(-1),))
140
+
141
+ if targets is not None:
142
+ # if we are given some desired targets also calculate the loss
143
+ logits = self.lm_head(x)
144
+ logits = 30 * torch.tanh(logits / 30) # @Grad62304977
145
+ logits = logits.float() # use tf32/fp32 for logits
146
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
147
+ else:
148
+ # inference-time mini-optimization: only forward the lm_head on the very last position
149
+ logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
150
+ logits = 30 * torch.tanh(logits / 30) # @Grad62304977
151
+ logits = logits.float() # use tf32/fp32 for logits
152
+ loss = None
153
+
154
+ # there are performance reasons why not returning logits is prudent, if not needed
155
+ if not return_logits:
156
+ logits = None
157
+
158
+ return logits, loss
159
+
160
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
161
+ """
162
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
163
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
164
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
165
+ """
166
+ for _ in range(max_new_tokens):
167
+ # if the sequence context is growing too long we must crop it at block_size
168
+ #idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
169
+ # forward the model to get the logits for the index in the sequence
170
+ logits, _ = self(idx)
171
+ # pluck the logits at the final step and scale by desired temperature
172
+ logits = logits[:, -1, :] / temperature
173
+ # optionally crop the logits to only the top k options
174
+ if top_k is not None:
175
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
176
+ logits[logits < v[:, [-1]]] = -float('Inf')
177
+ # apply softmax to convert logits to (normalized) probabilities
178
+ probs = F.softmax(logits, dim=-1)
179
+ # sample from the distribution
180
+ idx_next = torch.multinomial(probs, num_samples=1)
181
+ # append sampled index to the running sequence and continue
182
+ idx = torch.cat((idx, idx_next), dim=1)
183
+
184
+ return idx
185
+
186
+
187
+ # Run LLM inference
188
+ def run_inference(model, input_ids, max_new_tokens, temperature):
189
+ input_ids = torch.tensor(input_ids).unsqueeze(0)
190
+ return model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
191
+
192
+ # Main function
193
+ def load_model():
194
+ config = GPTConfig()
195
+ model = GPT(config)
196
+ model_path = 'nanogpt-speedrun-baseline.safetensors' # replace with your checkpoint path
197
+ hf_path = hf_hub_download("lemonteaa/nanogpt-speedrun", model_path)
198
+ missing, unexpected = safetensors.torch.load_model(model, hf_path)
199
+ model.eval()
200
+ return model
201
+
202
+ nanogpt_model = load_model()
203
+
204
+ def text_complete(prompt, max_new_tokens, temperature):
205
+ input_ids = tokenizer.encode_ordinary(prompt)
206
+ output_ids = run_inference(nanogpt_model, input_ids, max_new_tokens, temperature)
207
+ tmp = output_ids.squeeze().tolist()
208
+ return tokenizer.decode(tmp)
209
+
210
+
211
+ demo = gr.Interface(
212
+ title="NanoGPT Speedrun Baseline Model Inference Demo",
213
+ fn=text_complete,
214
+ inputs=[
215
+ gr.Text(label="Prompt"),
216
+ gr.Slider(label="max new tokens", minimum=10, maximum=500, value=100, step=1),
217
+ gr.Slider(label="temperature", minimum=0.0, maximum=2.0, value=0.9, step=0.1)
218
+ ],
219
+ outputs=["text"],
220
+ examples=[["Once upon a time, "], ["A quick and delicious recipe for pancake: "], ["The role of IT in supply chain is "]]
221
+ )
222
+
223
+ demo.queue()
224
+ demo.launch()