lemonteaa commited on
Commit
8c649e7
·
verified ·
1 Parent(s): a0570ed

Create convert.py

Browse files
Files changed (1) hide show
  1. src/convert.py +204 -0
src/convert.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from dataclasses import dataclass
4
+
5
+ #import tiktoken
6
+
7
+ #tokenizer = tiktoken.get_encoding("gpt2")
8
+
9
+ import safetensors.torch
10
+
11
+ # Define the GPTConfig dataclass
12
+ @dataclass
13
+ class GPTConfig:
14
+ vocab_size : int = 50304
15
+ n_layer : int = 12
16
+ n_head : int = 6 # head dim 128 suggested by @Grad62304977
17
+ n_embd : int = 768
18
+
19
+ # Define the Rotary class
20
+ class Rotary(torch.nn.Module):
21
+
22
+ def __init__(self, dim, base=10000):
23
+ super().__init__()
24
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
25
+ self.seq_len_cached = None
26
+ self.cos_cached = None
27
+ self.sin_cached = None
28
+
29
+ def forward(self, x):
30
+ seq_len = x.shape[1]
31
+ if seq_len!= self.seq_len_cached:
32
+ self.seq_len_cached = seq_len
33
+ t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
34
+ freqs = torch.outer(t, self.inv_freq).to(x.device)
35
+ self.cos_cached = freqs.cos().bfloat16()
36
+ self.sin_cached = freqs.sin().bfloat16()
37
+ return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
38
+
39
+ def apply_rotary_emb(x, cos, sin):
40
+ assert x.ndim == 4 # multihead attention
41
+ d = x.shape[3]//2
42
+ x1 = x[..., :d]
43
+ x2 = x[..., d:]
44
+ y1 = x1 * cos + x2 * sin
45
+ y2 = x1 * (-sin) + x2 * cos
46
+ return torch.cat([y1, y2], 3).type_as(x)
47
+
48
+ # Define the CausalSelfAttention class
49
+ class CausalSelfAttention(torch.nn.Module):
50
+
51
+ def __init__(self, config):
52
+ super().__init__()
53
+ self.n_head = config.n_head
54
+ self.n_embd = config.n_embd
55
+ self.head_dim = self.n_embd // self.n_head
56
+ assert self.n_embd % self.n_head == 0
57
+ self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
58
+ self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
59
+ self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
60
+ # output projection
61
+ self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
62
+ self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
63
+ self.rotary = Rotary(self.head_dim)
64
+ self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977
65
+
66
+ def forward(self, x, v1=None):
67
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
68
+ q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
69
+ k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
70
+ v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
71
+ if v1 is None:
72
+ v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
73
+ v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
74
+ cos, sin = self.rotary(q)
75
+ q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
76
+ q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
77
+ y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
78
+ y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
79
+ y = self.c_proj(y)
80
+ return y, v1
81
+
82
+ # Define the MLP class
83
+ class MLP(torch.nn.Module):
84
+
85
+ def __init__(self, config):
86
+ super().__init__()
87
+ self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
88
+ self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
89
+ self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
90
+
91
+ def forward(self, x):
92
+ x = self.c_fc(x)
93
+ x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
94
+ x = self.c_proj(x)
95
+ return x
96
+
97
+ # Define the Block class
98
+ class Block(torch.nn.Module):
99
+
100
+ def __init__(self, config):
101
+ super().__init__()
102
+ self.attn = CausalSelfAttention(config)
103
+ self.mlp = MLP(config)
104
+ self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.]))
105
+
106
+ def forward(self, x, v1, x0):
107
+ x = self.lambdas[0] * x + self.lambdas[1] * x0
108
+ x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1)
109
+ x = x + x1
110
+ x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
111
+ return x, v1
112
+
113
+ # Define the GPT class
114
+ class GPT(torch.nn.Module):
115
+
116
+ def __init__(self, config):
117
+ super().__init__()
118
+ self.config = config
119
+
120
+ self.transformer = torch.nn.ModuleDict(dict(
121
+ wte = torch.nn.Embedding(config.vocab_size, config.n_embd),
122
+ h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
123
+ ))
124
+ self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
125
+ self.lm_head.weight.data.zero_() # @Grad62304977
126
+
127
+ def forward(self, idx, targets=None, return_logits=True):
128
+
129
+ # forward the GPT model itself
130
+ x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
131
+ x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
132
+ x0 = x
133
+ v1 = None
134
+ for block in self.transformer.h:
135
+ x, v1 = block(x, v1, x0)
136
+ x = F.rms_norm(x, (x.size(-1),))
137
+
138
+ if targets is not None:
139
+ # if we are given some desired targets also calculate the loss
140
+ logits = self.lm_head(x)
141
+ logits = 30 * torch.tanh(logits / 30) # @Grad62304977
142
+ logits = logits.float() # use tf32/fp32 for logits
143
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
144
+ else:
145
+ # inference-time mini-optimization: only forward the lm_head on the very last position
146
+ logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
147
+ logits = 30 * torch.tanh(logits / 30) # @Grad62304977
148
+ logits = logits.float() # use tf32/fp32 for logits
149
+ loss = None
150
+
151
+ # there are performance reasons why not returning logits is prudent, if not needed
152
+ if not return_logits:
153
+ logits = None
154
+
155
+ return logits, loss
156
+
157
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
158
+ """
159
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
160
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
161
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
162
+ """
163
+ for _ in range(max_new_tokens):
164
+ # if the sequence context is growing too long we must crop it at block_size
165
+ #idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
166
+ # forward the model to get the logits for the index in the sequence
167
+ logits, _ = self(idx)
168
+ # pluck the logits at the final step and scale by desired temperature
169
+ logits = logits[:, -1, :] / temperature
170
+ # optionally crop the logits to only the top k options
171
+ if top_k is not None:
172
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
173
+ logits[logits < v[:, [-1]]] = -float('Inf')
174
+ # apply softmax to convert logits to (normalized) probabilities
175
+ probs = F.softmax(logits, dim=-1)
176
+ # sample from the distribution
177
+ idx_next = torch.multinomial(probs, num_samples=1)
178
+ # append sampled index to the running sequence and continue
179
+ idx = torch.cat((idx, idx_next), dim=1)
180
+
181
+ return idx
182
+
183
+ # Load the trained parameters
184
+ def load_checkpoint(model, checkpoint_path):
185
+ checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
186
+ model.load_state_dict(dict([(n.removeprefix("_orig_mod."), p) for n, p in checkpoint['model'].items()]))
187
+
188
+ # Run LLM inference
189
+ #def run_inference(model, input_ids):
190
+ # input_ids = torch.tensor(input_ids).unsqueeze(0)
191
+ # return model.generate(input_ids, 50)
192
+
193
+ # Main function
194
+ def main():
195
+ config = GPTConfig()
196
+ model = GPT(config)
197
+ checkpoint_path = 'state_step003200.pt' # replace with your checkpoint path
198
+ load_checkpoint(model, checkpoint_path)
199
+ model.eval()
200
+ safetensors.torch.save_model(model, "nanogpt-speedrun-baseline.safetensors")
201
+
202
+
203
+ if __name__ == '__main__':
204
+ main()