Geowizard / models /depth_normal_pipeline_clip.py
lemonaddie's picture
Upload 20 files
a7299bc verified
raw
history blame
13.3 kB
# A reimplemented version in public environments by Xiao Fu and Mu Hu
from typing import Any, Dict, Union
import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
DiffusionPipeline,
DDIMScheduler,
AutoencoderKL,
)
from models.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode
from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
from utils.colormap import kitti_colormap
from utils.depth_ensemble import ensemble_depths
from utils.normal_ensemble import ensemble_normals
from utils.batch_size import find_batch_size
import cv2
class DepthNormalPipelineOutput(BaseOutput):
"""
Output class for Marigold monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
normal_np (`np.ndarray`):
Predicted normal map, with depth values in the range of [0, 1].
normal_colored (`PIL.Image.Image`):
Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
"""
depth_np: np.ndarray
depth_colored: Image.Image
normal_np: np.ndarray
normal_colored: Image.Image
uncertainty: Union[None, np.ndarray]
class DepthNormalEstimationPipeline(DiffusionPipeline):
# two hyper-parameters
latent_scale_factor = 0.18215
def __init__(self,
unet:UNet2DConditionModel,
vae:AutoencoderKL,
scheduler:DDIMScheduler,
image_encoder:CLIPVisionModelWithProjection,
feature_extractor:CLIPImageProcessor,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
)
self.img_embed = None
@torch.no_grad()
def __call__(self,
input_image:Image,
denosing_steps: int = 10,
ensemble_size: int = 10,
processing_res: int = 768,
match_input_res:bool =True,
batch_size:int = 0,
domain: str = "indoor",
color_map: str="Spectral",
show_progress_bar:bool = True,
ensemble_kwargs: Dict = None,
) -> DepthNormalPipelineOutput:
# inherit from thea Diffusion Pipeline
device = self.device
input_size = input_image.size
# adjust the input resolution.
if not match_input_res:
assert (
processing_res is not None
)," Value Error: `resize_output_back` is only valid with "
assert processing_res >=0
assert denosing_steps >=1
assert ensemble_size >=1
# --------------- Image Processing ------------------------
# Resize image
if processing_res >0:
input_image = resize_max_res(
input_image, max_edge_resolution=processing_res
)
# Convert the image to RGB, to 1. reomve the alpha channel.
input_image = input_image.convert("RGB")
image = np.array(input_image)
# Normalize RGB Values.
rgb = np.transpose(image,(2,0,1))
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(device)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- predicting depth -----------------
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
single_rgb_dataset = TensorDataset(duplicated_rgb)
# find the batch size
if batch_size>0:
_bs = batch_size
else:
_bs = 1
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
# predicted the depth
depth_pred_ls = []
normal_pred_ls = []
if show_progress_bar:
iterable_bar = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable_bar = single_rgb_loader
for batch in iterable_bar:
(batched_image, )= batch # here the image is still around 0-1
depth_pred_raw, normal_pred_raw = self.single_infer(
input_rgb=batched_image,
num_inference_steps=denosing_steps,
domain=domain,
show_pbar=show_progress_bar,
)
depth_pred_ls.append(depth_pred_raw.detach().clone())
normal_pred_ls.append(normal_pred_raw.detach().clone())
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1:
depth_pred, pred_uncert = ensemble_depths(
depth_preds, **(ensemble_kwargs or {})
)
normal_pred = ensemble_normals(normal_preds)
else:
depth_pred = depth_preds
normal_pred = normal_preds
pred_uncert = None
# ----------------- Post processing -----------------
# Scale prediction to [0, 1]
min_d = torch.min(depth_pred)
max_d = torch.max(depth_pred)
depth_pred = (depth_pred - min_d) / (max_d - min_d)
# Convert to numpy
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
normal_pred = normal_pred.cpu().numpy().astype(np.float32)
# Resize back to original resolution
if match_input_res:
pred_img = Image.fromarray(depth_pred)
pred_img = pred_img.resize(input_size)
depth_pred = np.asarray(pred_img)
normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
# Clip output range: current size is the original size
depth_pred = depth_pred.clip(0, 1)
normal_pred = normal_pred.clip(-1, 1)
# Colorize
depth_colored = colorize_depth_maps(
depth_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = chw2hwc(depth_colored)
depth_colored_img = Image.fromarray(depth_colored_hwc)
normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
normal_colored_img = Image.fromarray(normal_colored)
return DepthNormalPipelineOutput(
depth_np = depth_pred,
depth_colored = depth_colored_img,
normal_np = normal_pred,
normal_colored = normal_colored_img,
uncertainty=pred_uncert,
)
def __encode_img_embed(self, rgb):
"""
Encode clip embeddings for img
"""
clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
img_in_proc = TF.resize((rgb +1)/2,
(self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
interpolation=InterpolationMode.BICUBIC,
antialias=True
)
# do the normalization in float32 to preserve precision
img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
self.img_embed = img_embed
@torch.no_grad()
def single_infer(self,input_rgb:torch.Tensor,
num_inference_steps:int,
domain:str,
show_pbar:bool,):
device = input_rgb.device
# Set timesteps: inherit from the diffuison pipeline
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
timesteps = self.scheduler.timesteps # [T]
# encode image
rgb_latent = self.encode_RGB(input_rgb)
# Initial depth map (Guassian noise)
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
rgb_latent = rgb_latent.repeat(2,1,1,1)
# Batched img embedding
if self.img_embed is None:
self.__encode_img_embed(input_rgb)
batch_img_embed = self.img_embed.repeat(
(rgb_latent.shape[0], 1, 1)
) # [B, 1, 768]
# hybrid hierarchical switcher
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
if domain == "indoor":
domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
elif domain == "outdoor":
domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
elif domain == "object":
domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
unet_input = torch.cat([rgb_latent, geo_latent], dim=1)
# predict the noise residual
noise_pred = self.unet(
unet_input, t.repeat(2), encoder_hidden_states=batch_img_embed, class_labels=class_embedding
).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
geo_latent = geo_latent
torch.cuda.empty_cache()
depth = self.decode_depth(geo_latent[0][None])
depth = torch.clip(depth, -1.0, 1.0)
depth = (depth + 1.0) / 2.0
normal = self.decode_normal(geo_latent[1][None])
normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
normal *= -1.
return depth, normal
def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.latent_scale_factor
return rgb_latent
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
"""
Decode normal latent into normal map.
Args:
normal_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded normal map.
"""
# scale latent
normal_latent = normal_latent / self.latent_scale_factor
# decode
z = self.vae.post_quant_conv(normal_latent)
normal = self.vae.decoder(z)
return normal